
Math 4400 Homework 1
Due: Monday, May 22nd, 2017

Feel free to work with your classmates, but everyone must turn in their own assignment. Please make a
note of who you worked with on each problem. Also, please give me an estimate of how long this assignment
took to complete.

Let me know if you find a typo, or you’re stuck on any of the problems.

1. Prove the following statements:

(a)

n∑
k=1

1

k2
≤ 2− 1

n
, for all integers n ≥ 1.

Solution: Base case: n = 1. Here we check that

1∑
k=1

1

k2
= 1 ≤ 2− 1

1
= 1

Induction step: suppose that
m∑

k=1

1

k2
≤ 2− 1

m

for some natural number m ≥ 1. Then

m+1∑
k=1

1

k2
=

m∑
k=1

1

k2
+

1

(m + 1)2
≤ 2− 1

m
+

1

(m + 1)2

so it suffices to show that

− 1

m
+

1

(m + 1)2
≤ − 1

m + 1
.

We multiply each side of this inequality by m(m + 1)2, so that we just have to show

−(m + 1)2 + m ≤ −(m + 1)m

(note that m(m + 1)2 is positive, so we don’t have to flip the inequality). Expanding out the
left- and right-hand sides above, we’ve reduced the problem to showing

−m2 −m− 1 ≤ −m2 −m

for all m ≥ 1, which is obviously true.

(b)

n∑
k=1

k2 =
n(n + 1)(2n + 1)

6
, for all integers n ≥ 1

Solution: Base case: n = 1, in which case we check:

1∑
k=1

k2 = 1, and
1(1 + 1)(2 · 1 + 1)

6
= 1

Induction step: let m be a natural number with m ≥ 1. Suppose that

m∑
k=1

k2 =
m(m + 1)(2m + 1)

6
.



Then
m+1∑
k=1

k2 =
m(m + 1)(2m + 1)

6
+ (m + 1)2

So we wish to show that

m(m + 1)(2m + 1)

6
+ (m + 1)2 =

(m + 1)(m + 2)(2m + 3)

6

Multiplying both sides by 6/(m + 1) (and noting that m + 1 6= 0), we’ve reduced the problem
to proving that

m(2m + 1) + 6(m + 1) = (m + 2)(2m + 3)

which is easy enough to check.

(c)

n∏
k=1

(
1 +

1

k

)
= n + 1, for all integers n ≥ 1, where

n∏
i=1

ai = a1a2 · · · an denotes the product

Solution: Base case: n = 1. In this case, we see 1 +
1

1
= 1 + 1, as desired.

Induction step: suppose
m∏

k=1

(
1 +

1

k

)
= m + 1

for some natural number m ≥ 1. Then

m+1∏
k=1

= (m + 1) ·
(

1 +
1

m + 1

)
= (m + 1)

m + 2

m + 1
= m + 2,

as desired

2. The following is an argument that all cows are the same color. We prove this by induction, by setting
P (n) =“any collection of n cows all have the same color”. Clearly, P (1) is true since every cow is the
same color as itself. Now let k ≥ 1 be a natural number and suppose P (k) is true and let S be a set of
k + 1 cows, numbered 1, 2, . . . , k + 1. Then cows 1 through k are all the same color, and cows 2 through
k + 1 are all the same color, by the induction hypothesis. But this means all k + 1 of our cows are the
same color, so we’ve proven P (k + 1). By induction, we’ve shown P (n) is true or all n, and in particular
when n is the number of cows on earth. So we’ve shown that all cows must be the same color.

Now, a quick google search shows that there are different colors of cows in the world. What’s wrong
with the argument above?

Solution: The base case is fine. The problem is with the induction step: it doesn’t work if k = 1.
Indeed, in that case, S = {c1, c2} for some cows c1 and c2. Then {c1} is a set of cows that are all the
same color, and {c2} is a set of cows that are all the same color, but there’s no reason why c1 and
c2 should be the same color as each other, since the sets {c1} and {c2} have an empty intersection
in this case. (Note that P (k) does imply P (k + 1) when k > 1!)

3. (a) Prove that any finite, non-empty subset of Z has a minimum.
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Solution: Solution 1: Let S ⊆ Z be nonempty. If S ⊆ N , then we’re done by the well-ordering
principle, so we can assume that S contains a negative integer. Let T = {x ∈ S | s < 0}. Then
T ⊆ S, so T is finite, and we can define N to be

N =
∑
x∈T

x

Then let T ′ = {x−N | x ∈ T}. Note that, for all y ∈ T , we have

y −N =
∑

x∈T,x 6=y

(−x) ≥ 0,

since x < 0 for all x ∈ T . Thus T ′ ⊆ N, so T ′ has a minimal element by the well-ordering
principle. Call this minimal element y0. Then y0 + N ∈ T . I claim that y0 + N is the minimal
element of T . To show this, suppose x ∈ T . Then x −N ∈ T ′. This means x −N ≥ y0 since
y0 is the minimal element of T ′. But this means x ≥ y0 + N , as desired.

Now let x ∈ S be arbitrary. If x < 0, then x ∈ T , so y0 +N ≤ x. If x ≥ 0, then y0 +N < 0 ≤ x
(remember, y0 + N ∈ T , which is the set of negative elements of S). So y0 + N is the minimal
element of S.

Solution 2 (sketch) Do induction on the size of S. If |S| = 1, then it only has one element,
and that’s the minimal element of S. For the induction step, suppose the proposition is true
for sets of size n, and suppose |S| = n+ 1. Then pick some element x ∈ S and set S′ = S \{x}.
Then S′ has a minimal element; call it y. If x < y, then x is the minimal element of S.
Otherwise, y is the minimal element of S. In either case, S has a minimal element.

(b) Use part (a) to show that any finite, non-empty subset of Z has a maximum.

Solution: Let S ⊆ Z be a finite, nonempty subset of Z. Let T = {−x | x ∈ S}. Then T has a
minimal element by part a; call it y. Then −y ∈ S. Now let x ∈ S be arbitrary. Then −x ∈ T
and y ≤ −x. But then −y ≥ x. So −y is the maximal element of S, so S has a maximal
element.

(c) Use part (b) to show that if a, b ∈ Z and a 6= 0, then gcd(a, b) exists and is unique.

Solution: We wish to show that there is a maximal integer c such that c|a and c|b. In other
words, we wish to show that the set

S = {c ∈ Z | c|a, c|b}

has a maximal element. By part b, it’s enough to show that S is nonempty and finite. We have
1 · a = a and 1 · b = b, so 1 ∈ S and S is nonempty. Let

T = {c ∈ Z | c|a} .

Then S ⊆ T , so it’s enough to show that T is finite. Now, if c | a, then c ·d = a for some d ∈ Z,
and so |c| · |d| = |a|. But a 6= 0, so d 6= 0, so |d| ≥ 1. But this means |c| = |a|/|d| ≤ |a|. Thus

T ⊆ {c ∈ Z | −a ≤ c ≤ a}

and the set on the right is finite.

To show uniqueness, suppose S has two maximum elements x and x′. Then, by defnition,
x ≥ x′ and x′ ≥ x, so x = x′.
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4. Compute the following gcd’s using the euclidean algorithm:

(a) gcd(1084, 412)

Solution:

1084 = 2 · 412 + 260

412 = 1 · 260 + 152

260 = 1 · 152 + 108

152 = 1 · 108 + 44

108 = 2 · 44 + 20

44 = 2 · 20 + 4

20 = 5 · 4

So the gcd is 4.

(b) gcd(1979, 531)

Solution:

1979 = 3 · 531 + 386

531 = 1 · 386 + 145

386 = 2 · 145 + 96

145 = 1 · 96 + 49

96 = 1 · 49 + 47

49 = 1 · 47 + 2

47 = 23 · 2 + 1

2 = 2 · 1

So the gcd is 1

(c) gcd(305, 185)

Solution:

305 = 1 · 185 + 120

185 = 1 · 120 + 65

120 = 1 · 65 + 55

65 = 1 · 55 + 10

55 = 5 · 10 + 5

10 = 2 · 5

So the gcd is 5.

5. Use your work for the above exercise to compute the continued fractions expansions of the following:

(a)
1084

412

Page 4



Solution:
1084

412
= [2; 1, 1, 1, 2, 4, 1, 4]

(b)
1979

531

Solution:
[3; 1, 2, 1, 1, 1, 23, 2]

(c)
305

185

Solution:
[1; 1, 1, 1, 5, 2]

6. Find the continued fraction expansion of
√

7 and prove it’s periodic. (Hint: we learned in class that√
7 should have a periodic continued fraction. Use a computer or a calculator to guess what it should

be, then see if you can prove that’s the case by showing
√

7 − 2 appears in its own continued fraction
expansion, kind of like what we did in class for

√
2)

Solution: By running the continued fraction algorithm for a few iterations, we see that the con-
tinued fraction expansion of

√
7 begins [2; 1, 1, 1, 4, 1, 1, 1, 4, . . .]. To prove

√
7 = [2; 1, 1, 1, 4], it’s

enough to show that
√

7− 2 = [0; 1, 1, 1, 4]. For this, it’s enough to show that:

√
7− 2 =

1

1 +
1

1 +
1

1 +
1

4 +
√

7− 2

We simplify the right-hand side a few times:

1

1 +
1

1 +
1

1 +
1

4 +
√

7− 2

=
1

1 +
1

1 +
1

1 +
2 +
√

7

3 +
√

7

=
1

1 +
3 +
√

7

5 + 2 ·
√

7

=
5 + 2

√
7

8 + 3
√

7

and it’s easy enough to check that
√

7− 2 =
5 + 2

√
7

8 + 3
√

7
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