
76 Congruences, Powers, and Euler’s Formula

b1, b2, b3, . . . (mod in)

are the same, so the product of the numbers in the first list is equal to the product

of the numbers in the second list:

(bra) (520) (b:3a) (bo(rn)a) b1 b9 b 5ó(fl) (mod m).

We can factor out (m) copies of ci from the left-hand side to obtain

a(m)B B (mod in), where B b1b9b3

Finally, we observe that .B is relatively prime to in, since each of the b’s is rela

tively prime to rn. This means we may cancel B from both sides to obtain Euler’s

formLlla
1cs(rn) 1 (mod in).

Exercises

1. Let b < b2 < •. < be the integers between I and m that are relatively prime

to in (including 1), and let B b1b2b3 be their product. The quantity B came up

during the proof of Euler’s formula.

(a) Show that either B 1 (mod rn) or B —1 (mod rn).

(b) Compute B for some small values of iii and try to find a pattern for when it is equal

to +1 (mod in) and when it is equal to —1 (mod in).

2. The number 3750 satisfies (3750) = 1000. Find a number a that has the following

three properties:

(i) a 73003 (mod 3750).

(ii) 1 E ci < 5000.

(iii) a is not divisible by 7.

3. A composite number in is called a Carmichael number if the congruence

1 (mod in) is true for every number a with gcd(a, in) = 1.

(a) Verify that in 561 = 3 . 11 . 17 is a Carmichael number. [Hint. It is not necessary

to actually compute am (mod in) for all 320 values of a. instead, use Fermat’s

Little Theorem to check that a2 1 (mod p) for each prime p dividing in, and

then explain why this implies that aml 1 (mod in).)

(b) Try to find another Carmichael number. Do you think that there are infinitely many

of them?



Euler’s Phi Function and the
Chinese Remainder Theorem

Euler’s formula
1 (mod m)

is a beautiful and powerful result, but it won’t be of much use to us unless we can
find an efficient way to compute the value of (rn). Clearly, we don’t want to list
all the numbers from 1 to rn — 1 and check each to see if it is relatively prime
to m. This would be very time consuming if ni 1000, for example, and it would
be impossible for m 10100. One case where (in) is easy to compute is when
rn p is a prime, since then every integer 1 a p — 1 is relatively prime to rn.
Thus, (p) = p — 1.

We can easily derive a similar formula for (h) when rn = ph is a power of a
prime. Rather than trying to count the numbers between 1 and k that are relatively
prime to k, we will instead start with all numbers 1 < a < k, and then we will
discard the ones that are not relatively prime to ph,

When is a number a not relatively prime to pk? The only factors of p” are
powers of p, so a is not relatively prime to k exactly when it is divisible by p. In
other words,

(pk)_p#{a:1<a<pkandpa}

So we have to count how many integers between 1 and are divisible by p. That’s
easy, they are the multiples of p.

p, 2p, 3 4J) (k_1
—

2) (k_1 —

There are p’ of them, which gives us the formula

(])k) k k_1

From Chapter 11 of A Friendly Introduction to Number Theory, Fourth Edition. Joseph H. Silverman.
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For example,
o(2401) = 6(7) = 74_ 73 2058.

This means that there are 2058 integers between I and 2401 that are relatively

prime to 2401.

We now know how to compute (m) when m is a power of a prime. Next

suppose that in is the product of two primes powers. in = piqh. To formulate a

conjecture. we compute th(pq’) for some small values and compare it with the

values of 6(p1) and (qk).

pi k p1 qk ô(p) 0(k) o(p’(J1j1

5 202 4

—t L—H
9 25 225 6 20 120

This table suggests that (pJqk) o(pJ)o(q). We can also try some examples

with numbers that are not prime powers, such as

(14) = 6, o(i5) = 8. 6(210) ó(11 15) = 48.

all this leads us to guess that the following assertion is true:

If gccl(rn, n) = 1, then Q(irln) o(iui )o(n).

Before trying to prove this multiplication formula, we show how it can be used to

easily compute (in) for any m or. more precisely, for any in that you are able to

factor as a product of primes.

Suppose that we are given a number in. and suppose that we have factored in

as a product of primes, say

k1 k k.
in = p1

. . . p

where Pi ,p Pr are all different. First we use the multiplication formula to

compute
(m) = (p1)

. (p2)
...

Then we use the prime power formula (p1) = p1 — p1 to obtain

(m) (p’ —

p’) . (p2 ])121) .

.. (p’ —
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This formula may look complicated, but the procedure to compute (m) is really
very simple. For example,

(1512) = O(2 . 33 7) d(3)
.

(2 — 22) (33 — 32) (7 — 1) = 4 18 6 = 432.

So there are 432 numbers beteen 1 and 1512 that are relatively prime to 1512.
We are now ready to prove the multiplication formula for Eulers phi function.

We also restate the formula for prime powers so as to have both formulas conve
niently listed together.

Theorem I (Phi Function Formulas). (a) Ifp is a prime and k > 1, then

= — k1

(b) lfgcd(in, n) = 1, then ó(inn) th(in)ó(n).

Proof We verified the prime power formula (a) earlier in this chapter, so we need
to check the product formula (b). We will do this by using one of the most powerful
tools available in number theory: -

öUTIN
You may wonder how counting can be so powerful. After all, it’s one of the first
things taught in kindergarten.’ Briefly, we are going to find one set that con
tains (rnn) elements and a second et that contains (in)(n) elements. Then
we will show that the two sets contain the same number of elements.

The first set is

{ a : 1 a mn and gcd(a,mn) = i}.

It is clear that this set contains (mn) elements, since that’s just the definition
of 5(rnn). The second set is

1 tb e
1 b < -in and gcd(L. m) = 1
1 c ii and gcd(c.n) = 1

How many pairs (b, c) are in this second set? Well, there are (m) choices for b,
since that’s the definition of 6(m). and there are 6(n) choices for c, since that’s the
definition of (n). So there are 6(m) choices for the first coordinate Ii and 6(n)

‘Yet another illustration of the principle that Even-thing lEver Needed To Know I Learned in
Kindergarten, although proving theorems in number theory probably isn’t one of the basic skills that
Robert Fulghum had in mind when he wrote his book.
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choices for the second coordinate c; so there are a total of o(m)(n) choices for

the pair (b, c).

For example, suppose that we take m 4 and ri = 5. Then the first set consists

of the numbers
{1, 3, 7, 9, 11, 13, 17, 19}

that are relatively prime to 20. The second set consists of the pairs

{(i, 1), (1,2), (1,3), (1,4), (3,1), (3,2), (3.3), (3,4)}

where the first number in each pair is relatively prime to 4 and the second number

in each pair is relatively prime to 5.

Going back to the general case, we are going to take each element in the first

set and assign it to a pair in the second set in the following way:

1 1 a inn

___

1 1 < b rn, gccl(b, in) = 1
CL gcd(a, ma) if ,‘ (b, c) :

1 , gcd(c,n) = 1

a mod inn (a mod in, a mod n)

What this means is that we take the integer a in the first set and send it to the

pair (b, c) with

a b (mod rn) and a c (inod a).

This is probably clearer if we look again at our example with in 4 and n = 5.

Then, for example, th number 13 in the first set gets sent to the pair (1,3) in the

second set, since 13 1 (mod 4) and 13 3 (mod 5). We do the same for each

of the other numbers in the first set.

__

{(i 1) (1 2) (1 3) (1 4)
{1. 3, 7,9, 11, 13,17, 19} ,‘

‘ (3 ;, (39) (3.3), (3 4)}

1:) (1,1) 11 * (3.1)

3 (3,3) 13 -* (1,3)

17—(1,2)

9 (1,4) 19 F—* (3.4)

In this example, you can see that each pair in the second set is matched with exactly

one number in the first set. This means that the two sets have the same number of

elements. We want to check that the same matching occurs in general.

We need to check that the following two statements are correct:

1. Different numbers in the first set get sent to different pairs in the second set.
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2. Every pair in the second set is hit by some number in the first set.

Once we verify these two statements, we will know that the two sets have the
same number of elements. But we know that the first set has (mri) elements
and the second set has 6(m)(ri) elements. So in order to finish the proof that
(mn) = ó(Tn)6(n), we just need to verify (1) and (2).

To check (1), we take two numbers a1 and 02 in the first set, and we suppose
that they have the same image in the second set, This means that

E a2 (mod in) and a1 (12 (mod ri).

Thus, a1 — a2 is divisible by both in and ii. However, in and n are relatively prime,
so u

— 2 must be divisible by the product mu. in other words,

al a (mod mu).

which shows that ul and a2 are the same element in the first set. This completes
our proof of statement (1).

To check statement (2), we need to show that for any given values of b and c
we can find at least one integer a satisfying

a b (mod in) and a c (mod n).

The fact that these simultaneous congruences have a solution is of sufficient im
portance to warrant having its own name.

Theorem 2 (Chinese Remainder Theorem). Let rn and n be integers satisfying
gcd(m, ii) = 1, and let b and c be any integers. Then the simultaneous congru
ences

x b (mod ‘in) and x c (mod n)

haj’e exactly one solution with 0 < x < run.

Proof Let’s start, as usual, with an example. Suppose we want to solve

8 (mod 11) and x 3 (mod 19).

The solution to the first congruence consists of all numbers that have the form
= ily + 8. We substitute this into the second congruence, simplify, and try to

solve. Thus,

ily ± 8 3 (mod 19)

ily 14 (mod 19).
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We know how to solve linear congruences of this sort. The solution is Yi

3 (mod 19), and then we can find the solution to the original congruences us

ing Si ilyi + 8 = 11 3 + 8 = 41. Finally, we should check our answer:

(41 — 8)/li = 3 and (41 — 3)/19 2. V

For the general case, we again begin by solving the first congruence x

b (mod in). The solution consists of all numbers of the form x = my + b. We

substitute this into the second congruence, which yields

my c — b (mod n).

We are given that gcclQirz, n) = 1, so the Linear Congruence Theorem tells us that

there is exactly one solution y with 0 Yi < i. Then the solution to the original

pair of congruences is given by

i = my + b;

and this will be the only solution x1 with 0 < s < inn. since there is only

one yi between 0 and ii, and we multiplied Yl by in to get Si. This completes our

proof of the Chinese Remainder Theorem and, with it, our proof of the formula

(in’n) = (ni ) (u).

Historical Interlude. The first recorded instance of the Chinese Remainder The—

orem appears in a Chinese mathematical work from the late third or early fourth

century. Somewhat surprisingly, it deals with the harder problem of three simulta

neous congruences.

“We have a number of things, but we do not know cxactly how many.

if we count them by threes, we have two left over, if we count them

by fives, we have three left over. If we count them by sevens, we have

two left over. How many things are there?”

Sun Tzu Suan Ching (Master Sun’s Mathematcal Manual)

Circa AD 300. volume 3, problem 26.

Exercises

1. (a) Find the value of5(97).
(b) Find the value of(8800).

2. (a) If in 3, explain why (m) is always even.
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(b) q1(m) is “usually” divisible by 4. Describe all the rn’s for which (m) is not divisible
by 4.

3. Suppose that Pi, P2,.. Pr are the distinct primes that divide rn. Show that the follow
ing formula for (m) is correct.

Use this formula to compute (1000000).

4. . Write a program to compute (n), the value of Euler’s phi function. You should
compute (n) by using a factorization of n into primes, not by finding all the a’s between 1
and n that are relatively prime to n.

5. For each part, find an x that solves the given simultaneous congruences.
(a) r 3 (mod 7) and r 5 (mod 9)
(b) x 3 (mod 37) and x 1 (mod 87)
(c) r 5 (mod 7) and x 2 (mod 12) and x S (mod 13)

6. Solve the 1700-year-old Chinese remainder problem from the Sun Tzu Suwi Ching.

7. A farmer is on the way to market to sell eggs when a meteorite hits his truck and destroys
all of his produce. In order to file an insurance claim, he needs to know how many eggs
were broken. He knows that when he counted the eggs by 2’s, there was 1 left over, when
he counted them by 3’s, there was I left over, when he counted them by 4’s, there was 1 left
over, when he counted them by 5’s, there was 1 left over, and when he counted them by 6’s,
there was I left over, but when he counted them by 7’s, there were none left over. What is
the smallest number of eggs that were in the truck?

8. Write a program that takes as input four integers (b, rn, c, a) with gccl(iii, ii) = 1
and computes an integer x with 0 a < inn satisfying

x b (mod in) and x c (mod ii).

9. In this exercise you will prove a version of the Chinese Remainder Theorem for three
congruences Let in 1, in2, in3 be positive integers such th3t e1ch pu1 is i el itively p1 ime
That is,

gccl(rn1,in2) = 1 and gcd(in1,in3) = 1 and gccl(in2,in3) = 1.

Let a1,a2, a3 be any three integers. Show that there is exactly one integer x in the interval
() z < 1n1m2in3 that simultaneously solves the three congruences

x a1 (mod 7111), x a2 (mod in2), x a3 (mod 1113).

(‘an you figure out how to generalize this problem to deal with lots of congruences

a: a1 (mod (1 (mod in2), . . . , .r 1r (mod Tflr)?

In particular, what conditions do the moduli in1 in2 nr need to satisfy?


