Middern 2 review
October 31, 2022
1. Let
$$d_{i}$$
, d_{i} , $d_{$

$$\begin{aligned} & \mathcal{T}_{1} = -\mathcal{T}_{2} \times \mathcal{T}_{3} \\ & \mathcal{T}_{2} = \mathcal{T}_{1} + \mathcal{T}_{3} \\ & \mathcal{T}_{4} = \mathcal{T}_{2} + \mathcal{T}_{3} \\ & \mathcal{T}_{4} = \mathcal{T}_{2} + \mathcal{T}_{3} \\ & \mathcal{T}_{4} = \mathcal{T}_{2} + \mathcal{T}_{3} \\ & \mathcal{T}_{4} = \mathcal{T}_{4} + \mathcal{T}_{4} \\ & \mathcal{T}_{4} = \mathcal{T}_{4} \\ & \mathcal{T}_{4} \\ & \mathcal{T}_{4} = \mathcal{T}_{4} \\ & \mathcal{T}_{4} \\ & \mathcal{T}_{4} = \mathcal{T}_{4} \\ & \mathcal{T}_{4} \\ &$$

42. Consider an $n \times m$ matrix

A = QR,

where *Q* is an $n \times m$ matrix with orthonormal columns and *R* is an upper triangular $m \times m$ matrix with positive diagonal entries r_{11}, \ldots, r_{mm} . Express $det(A^T A)$ in terms of the scalars r_{ii} . What can you say about the sign of $det(A^T A)$?

47. If A = QR is a QR factorization, what is the relationship between $A^T A$ and $R^T R$?

48. Consider an invertible $n \times n$ matrix A. Can you write A as A = LQ, where L is a *lower* triangular matrix and Q is orthogonal? *Hint*: Consider the QR factorization of A^T .

(Hint: recall $(AB)^T = B^T A^T$)

- 4. (a) Find an example of a 3×3 -matrix M such that $rank(M) < rank(M^2)$, or show that this is not possible
 - (b) Find an example of a $3\times 3\text{-matrix}\ M$ such that $\mathrm{rank}(M^2)<\mathrm{rank}(M),$ or show that this is not possible