$$
\begin{aligned}
& \vec{v} \cdot \vec{w}=\|\vec{u}\|\|\vec{w}\| \cos \theta
\end{aligned} \begin{aligned}
\vec{v} \cdot \vec{w}=\left(2 \vec{u}_{1}+3 \vec{u}_{2}\right) \cdot\left(4 \vec{u}_{2}+\vec{u}_{3}\right) & =2 \vec{u}_{1} \cdot 4 \vec{u}_{2}+\underbrace{\sqrt{u_{2}}}_{12} \cdot 4 \vec{u}_{2}+2 \vec{u}_{2}-\vec{u}_{3}+ \\
& =12
\end{aligned}
$$

$$
\|\vec{V}\|=\sqrt{\vec{V}_{0} \vec{V}}=\sqrt{2.2+3.3}=\sqrt{13}
$$

$$
12=\sqrt{13} \cdot \sqrt{17} \cdot \cos \theta
$$

$$
\|\vec{\omega}\|=\sqrt{\text { 2. Consider a }}=\sqrt{4 \cdot 4+1 \cdot \text {-factorization, }}=\sqrt{17}
$$

(a) Find $\vec{v}_{1} \cdot \vec{v}_{2}$
(b) Find $\left\|\vec{v}_{3}\right\|$
(c) Find the angle between \vec{v}_{1} and \vec{v}_{3}.
a)

$$
\begin{aligned}
\vec{V}_{1} \cdot \sigma_{2} & =2 \vec{u}_{1} \cdot\left(\vec{u}_{1}+6 \vec{u}_{2}\right) \\
& =\frac{2 \vec{u}_{\cdot} \cdot \vec{u}_{1}}{1}+\frac{2 \vec{u}_{1} \cdot 6 \vec{u}_{2}}{0}=2
\end{aligned}
$$

b) $\sqrt{\left(2 \overrightarrow{u_{u}}+\overrightarrow{u_{2}}+3 \overrightarrow{u_{3}}\right) \cdot\left(2 \vec{u}_{1}+\overrightarrow{u_{2}}+3 \overrightarrow{u_{3}}\right)}=\sqrt{2.2+1.1+3.3}=\sqrt{14}$
C)

$$
\begin{aligned}
& v_{1} \cdot v_{3}=\underbrace{2 \vec{u}_{1} \cdot\left(2 \vec{u}_{1}\right.}+\vec{u}_{2}+3 \vec{u}_{3})=4 \\
& \left\|\vec{v}_{3}\right\|=\sqrt{14} \| \\
& \left\|\vec{v}_{1}\right\|=\sqrt{2 \vec{u}_{1} \cdot 2 \vec{u}_{1}}=2
\end{aligned} \quad \leadsto \cos \theta=\frac{4}{\sqrt{14}-2}
$$

$$
\left[\begin{array}{cc}
-1 & 1 \\
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right]
$$

$$
x_{1}=-x_{2}+x_{3}
$$

$$
x_{4}=x_{2}+x_{3}
$$

3. Let $V \subseteq \mathbb{R}^{4}$ be the subspace defined by the equation. $x_{3}=x_{1}+x_{2}$ and $x_{4}=x_{2}+x_{3}$. Find the matrix P_{V} of the orthogonal projection onto V.
Formulas:- if $\vec{u}_{1}, \ldots, \vec{u}_{n}$ is an ONB for V, and $Q=\left[\vec{u}_{1},, \vec{u}_{n}\right]$ then matrix for proju is $Q Q^{\top}$

- It $\vec{v}_{1},-\vec{v}_{n}$ is any basis for v, and $A=\left[\vec{v}_{1}, \ldots, \vec{v}_{n}\right]$, Then the matrix for pioju is $A\left(A^{\top} A\right)^{-1} . A^{\top}$ wont to find a basis for v !

$$
\begin{aligned}
x_{1}+x_{2}-x_{3} & =0 \\
x_{2}+x_{3}-x_{4} & =0 \quad \operatorname{ker}\left(\left[\begin{array}{cccc}
1 & 1 & -1 & 0 \\
0 & 1 & 1 & -1
\end{array}\right]\right)=V .
\end{aligned}
$$

Find bast) \& ken of metric
REF: $\left[\begin{array}{cccc}1 & 0 & -2 & 1 \\ 0 & 1 & 1 & -1\end{array}\right]$.

$$
\begin{aligned}
& x_{1}=2 x_{3}-x_{4} \\
& x_{2}=-x_{3}+x_{21} \\
& x_{3}=x_{3}
\end{aligned} \quad \text { basis: }\left[\begin{array}{c}
2 \\
-1 \\
y \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
0 \\
1
\end{array}\right]^{n}
$$

$\left.\begin{array}{c}x_{u}= \\ 4 \\ 4 \\ 4 \\ 1 \\ 4\end{array}\right]$.
 $\left[\begin{array}{cc}2 & -1 \\ -1 & 1 \\ 1 & 0 \\ 0 & 1\end{array}\right]$

$$
\begin{aligned}
& f(x)=(-1)^{4-1)} \cdot x \cdot \operatorname{lot}\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 2 & 3 & 4 \\
0 & 0 & 3 & 4 \\
0 & 0 & 0 & 4
\end{array}\right]+(-1)^{4+2} \cdot 1 \cdot \text { cont } \\
& \text { triangelear } \\
& \text { motrin }+(-1)^{\text {th }+3} \cdot 2 \cdot \text { comet } \\
&+ \text { cont } \\
&+ \text { commit. }
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow f^{\prime}(x) & =(-1)^{5} \cdot 1 \cdot 2 \cdot 3 \cdot 4 \\
& =-24
\end{aligned}
$$

42. Consider an $n \times m$ matrix

$$
A=Q R,
$$

where Q is an $n \times m$ matrix with orthonormal columns and R is an upper triangular $m \times m$ matrix with positive diagonal entries $r_{11}, \ldots, r_{m m}$. Express $\operatorname{det}\left(A^{T} A\right)$ in terms of the scalars $r_{i i}$. What can you say about the sign of $\operatorname{det}\left(A^{T} A\right)$?
47. If $A=Q R$ is a $Q R$ factorization, what is the relationship between $A^{T} A$ and $R^{T} R$?
48. Consider an invertible $n \times n$ matrix A. Can you write A as $A=L Q$, where L is a lower triangular matrix and Q is orthogonal? Hint: Consider the $Q R$ factorization of A^{T}.
4. (a) Find an example of a 3×3-matrix M such that $\operatorname{rank}(M)<\operatorname{rank}\left(M^{2}\right)$, or show that this is not possible
(b) Find an example of a 3×3-matrix M such that $\operatorname{rank}\left(M^{2}\right)<\operatorname{rank}(M)$, or show that this is not possible

