Math 2145.3 worksheet

1. If A is any matrix, recall that A^{T} denotes the transpose of A. This is defined as the matrix where the columns of A^{T} are the rows of A, and vice-versa.
(a) Write down the transposes of the following matrices:

$$
\begin{array}{r}
A=\left[\begin{array}{cc}
\pi & e \\
\sqrt{2} & 1 / 3
\end{array}\right], \quad B=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right], \quad C=\left[\begin{array}{ll}
0 & 0
\end{array}\right], \quad D=\left[\begin{array}{l}
1 \\
3 \\
3 \\
7
\end{array}\right] \\
A^{\top}=\left[\begin{array}{ll}
\pi & \sqrt{2} \\
e & 1 / 3
\end{array}\right], \quad B^{\top}=\left[\begin{array}{llll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right] \quad C^{\top}=\left[\begin{array}{l}
0 \\
0 \\
7
\end{array}\right] \quad D^{\top}=\left[\begin{array}{llll}
1 & 3 & 3 & 7
\end{array}\right]
\end{array}
$$

(b) What is $\left(A^{T}\right)^{T}$ (the transpose of A-transpose)? In general, if E is any matrix, what is $\left(E^{T}\right)^{T}$?

$$
\left(A^{\top}\right)^{\top}=\left[\begin{array}{ll}
\pi & e \\
1 / 3
\end{array}\right)=A . \quad \text { In general: }\left(E^{T}\right)^{\top}=E
$$

(c) Suppose E is a matrix with m rows and n columns. How many rows and columns does E^{T} have?
E^{\top} has n rows and m columns
(\# rows and coals get swapped)
2. Let $\vec{v}=\left[\begin{array}{c}1 \\ 3 \\ -2\end{array}\right]$ and $\vec{w}=\left[\begin{array}{l}4 \\ 0 \\ 3\end{array}\right]$. Compute the dot product $\vec{v} \cdot \vec{w}$ and the matrix product $\vec{v}^{T} \vec{w}$. What do you notice?

$$
\begin{aligned}
& \vec{v} \cdot \vec{\omega}=1 \cdot 4+30+-2 \cdot 3=-2 \\
& \vec{v}+\vec{\omega}=\left[\begin{array}{lll}
1 & 3 & -2
\end{array}\right]\left[\begin{array}{l}
4 \\
0 \\
3
\end{array}\right]=[-2]
\end{aligned}
$$

3. Let $A=\left[\begin{array}{cc}0 & 4 \\ 0 & -1 \\ 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{cc}-1 & 2 \\ 3 & 1 \\ 2 & 0\end{array}\right]$ (a) Find $A^{T} B$.

$$
\left[\begin{array}{ccc}
0 & 0 & 1 \\
4 & -1 & 0
\end{array}\right]\left[\begin{array}{cc}
-1 & 2 \\
3 & 1 \\
2 & 0
\end{array}\right]=\left[\begin{array}{cc}
2 & 0 \\
-7 & 7
\end{array}\right]
$$

(b) Let \vec{v}_{1}, \vec{v}_{2} be the columns of A and let \vec{w}_{1}, \vec{w}_{2} be the columns of B. Compute all the dot products $\vec{v}_{i} \cdot \vec{w}_{j}$. What do you notice?

$$
\left[i, \cdot\left[\begin{array}{l}
\hat{2}]=2
\end{array}\right.\right.
$$

$$
\left.\left.\left\lvert\, \begin{array}{l}
0 \\
i
\end{array}\right.\right) \cdot \left\lvert\, \begin{array}{l}
1 \\
j
\end{array}\right.\right]=0
$$

$$
\left[\begin{array}{l}
4 \\
-5
\end{array}\right] \cdot\left[\begin{array}{c}
-1 \\
-1 \\
2
\end{array}\right]=-7 \quad\left[\begin{array}{c}
4 \\
0
\end{array}\right] \cdot\left[\begin{array}{l}
2 \\
b^{2}
\end{array}\right]=7
$$

(c) Let $A=\left[\vec{a}_{1} \ldots \vec{a}_{r}\right]$ and $B=\left[\vec{b}_{1}, \ldots, \vec{b}_{s}\right]$, where \vec{a}_{i} and \vec{b}_{j} are all vectors in \mathbb{R}^{n}. Is the matrix product $A^{T} B$ well-defined? (That is, do these two matrices have the correct numbers of rows/columns so that this product is defined?) If so, can you guess how the entries of $A^{T} B$ relate to the dot products of the various \vec{a}_{i} and \vec{b}_{j} vectors? Yes! Aフ has n cols, B has n rows

(ley pt!)

$$
A^{\top} B=\left[\begin{array}{cccc}
a_{1} \cdot b_{1} & a_{1} \cdot b_{2} & \cdots & a_{1} \cdot b_{5} \\
a_{2} \cdot b_{1} & a_{2} b_{2} & \cdots & a_{2} \circ b_{5} \\
\vdots & \vdots & & \vdots \\
a_{1} \circ b_{1} & a_{r} \circ b_{2} & -r_{\text {raves }} & a_{r} \circ b_{5}
\end{array}\right]
$$

4. (a) Let $A=\left[\begin{array}{cc}1 / \sqrt{2} & -1 / \sqrt{2} \\ 0 & 0 \\ 1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right]$. Compute $A^{T} A$.

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

(b) Suppose B is an $m \times n$-matrix with orthonormal columns. What can you say about $B^{T} B$? (Hint: the matrix A from part (a) has orthonormal columns!)

(c) Suppose $\vec{u}_{1}, \ldots, \vec{u}_{n}$ is some orthonormal basis of \mathbb{R}^{n}. Let $Q=\left[\vec{u}_{1} \cdots \vec{u}_{n}\right]$. In other words the columns of Q are the vectors $\vec{u}_{1}, \ldots, \vec{u}_{n}$. Is Q invertible? If so, is there a quick way to find Q^{-1} ?

is Square)

Page 3
5. Let

$$
\vec{u}_{1}=\left[\begin{array}{c}
-1 / \sqrt{2} \\
1 / \sqrt{2} \\
0 \\
0
\end{array}\right], \quad \vec{u}_{2}=\left[\begin{array}{l}
1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right],
$$

and let $V \subseteq \mathbb{R}^{4}$ be the subspace spanned by \vec{u}_{1} and \vec{u}_{2}.
(a) Let $\vec{w}=\left[\begin{array}{lll}{\left[\begin{array}{lll}2 & 3 & 4\end{array}\right]^{T}}\end{array}{\text {. Compute } \operatorname{proj}_{V}(\vec{w}) \text {, }, \text {, }}^{2}\right.$

$$
\left[\begin{array}{llll}
2 & 3 & 4
\end{array}\right]^{\top}
$$

(b) Let $Q=\left[\begin{array}{ll}\vec{u}_{1} & \vec{u}_{2}\end{array}\right]$ be the matrix whose columns are \vec{u}_{1} and \vec{u}_{2}. Compute $Q Q^{T} \vec{w}$. What do you notice?

