Math 2145.3 worksheet

1. If A is any matrix, recall that A^{T} denotes the transpose of A. This is defined as the matrix where the columns of A^{T} are the rows of A, and vice-versa.
(a) Write down the transposes of the following matrices:

$$
A=\left[\begin{array}{cc}
\pi & e \\
\sqrt{2} & 1 / 3
\end{array}\right], \quad B=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right], \quad C=\left[\begin{array}{lll}
0 & 0 & 7
\end{array}\right], \quad D=\left[\begin{array}{l}
1 \\
3 \\
3 \\
7
\end{array}\right]
$$

(b) What is $\left(A^{T}\right)^{T}$ (the transpose of A-transpose)? In general, if E is any matrix, what is $\left(E^{T}\right)^{T}$?
(c) Suppose E is a matrix with m rows and n columns. How many rows and columns does E^{T} have?
2. Let $\vec{v}=\left[\begin{array}{c}1 \\ 3 \\ -2\end{array}\right]$ and $\vec{w}=\left[\begin{array}{l}4 \\ 0 \\ 3\end{array}\right]$. Compute the dot product $\vec{v} \cdot \vec{w}$ and the matrix product $\vec{v}^{T} \vec{w}$. What do you notice?
3. Let $A=\left[\begin{array}{cc}0 & 4 \\ 0 & -1 \\ 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{cc}-1 & 2 \\ 3 & 1 \\ 2 & 0\end{array}\right]$
(a) Find $A^{T} B$.
(b) Let \vec{v}_{1}, \vec{v}_{2} be the columns of A and let \vec{w}_{1}, \vec{w}_{2} be the columns of B. Compute all the dot products $\vec{v}_{i} \cdot \vec{w}_{j}$. What do you notice?
(c) Let $A=\left[\vec{a}_{1} \ldots \vec{a}_{r}\right]$ and $B=\left[\vec{b}_{1}, \ldots, \vec{b}_{s}\right]$, where \vec{a}_{i} and \vec{b}_{j} are all vectors in \mathbb{R}^{n}. Is the matrix product $A^{T} B$ well-defined? (That is, do these two matrices have the correct numbers of rows/columns so that this product is defined?) If so, fill in the blanks: the i, j entry of $A^{T} B$ (meaning the entry in the i th row and j th column) is the dot product of \qquad and \qquad
4. (a) Let $A=\left[\begin{array}{cc}1 / \sqrt{2} & -1 / \sqrt{2} \\ 0 & 0 \\ 1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right]$. Compute $A^{T} A$.
(b) Suppose B is an $m \times n$-matrix with orthonormal columns. What can you say about $B^{T} B$? (Hint: the matrix A from part (a) has orthonormal columns!)
(c) Suppose $\vec{u}_{1}, \ldots, \vec{u}_{n}$ is some orthonormal basis of \mathbb{R}^{n}. Let $Q=\left[\vec{u}_{1} \cdots \vec{u}_{n}\right]$. In other words the columns of Q are the vectors $\vec{u}_{1}, \ldots, \vec{u}_{n}$. Is Q invertible? If so, is there a quick way to find Q^{-1} ?
5. Let

$$
\vec{u}_{1}=\left[\begin{array}{c}
-1 / \sqrt{2} \\
1 / \sqrt{2} \\
0 \\
0
\end{array}\right], \quad \vec{u}_{2}=\left[\begin{array}{c}
1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right]
$$

and let $V \subseteq \mathbb{R}^{4}$ be the subspace spanned by \vec{u}_{1} and \vec{u}_{2}.
(a) Let $\vec{w}=\left[\begin{array}{llll}2 & 3 & 4 & 0\end{array}\right]^{T}$. Compute $\operatorname{proj}_{V}(\vec{w})$,
(b) Let $Q=\left[\begin{array}{ll}\vec{u}_{1} & \vec{u}_{2}\end{array}\right]$ be the matrix whose columns are \vec{u}_{1} and \vec{u}_{2}. Compute $Q Q^{T} \vec{w}$. What do you notice?

