$$
\begin{aligned}
& {\left[\begin{array}{l}
1 \\
0
\end{array}\right] \rightarrow\left[\begin{array}{l}
0 \\
1
\end{array}\right]} \\
& {\left[\begin{array}{l}
0 \\
1
\end{array}\right] \rightarrow\left[\begin{array}{r}
-1 \\
0
\end{array}\right]}
\end{aligned}
$$

Midterm 2 review
November 2, 2022

1. Find the determinants of the linear transformations depicted below:
matrix

$\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
Shew

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]}
\end{aligned}
$$

area $=2 \cdot 1=2$

- area is preserved
- orientation is presonved

$$
\Rightarrow \text { let }=+1
$$

$$
\operatorname{det}=0
$$

- projection onto x-axis. nod invatible

$$
\Rightarrow \operatorname{det}=0
$$

$$
\vec{u}_{2}=\frac{1}{\| \nabla_{2}+11} \vec{u}_{2}=\frac{1}{2}\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right]
$$

3. Let V be the image of the matrix M above. Let $\vec{v}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]$. Find $\operatorname{proj}_{V}(\vec{v})$.

$$
\begin{aligned}
& \left(\vec{u}_{1} \circ \vee\right) \vec{u}_{1}+\left(\vec{u}_{2} \circ v\right) \vec{u}_{2} \\
& =\left(\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \cdot\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]\right) \cdot \frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\left(\frac{1}{2}\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right)\right) \frac{1}{2}\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
2 \\
3 \\
2 \\
3
\end{array}\right]
\end{aligned}
$$

9. If \vec{v}_{1} and \vec{v}_{2} are linearly independent vectors in \mathbb{R}^{2}, what is the relationship between $\operatorname{det}\left[\begin{array}{ll}\vec{v}_{1} & \vec{v}_{2}\end{array}\right]$ and $\operatorname{det}\left[\begin{array}{ll}\vec{v}_{1} & \vec{v}_{2}^{\perp}\end{array}\right]$, where \vec{v}_{2}^{\perp} is the component of \vec{v}_{2} orthogonal to \vec{v}_{1} ?

$$
\operatorname{det}\left[\begin{array}{ll}
\vec{b}_{1} & \vec{v}_{2}
\end{array}\right]
$$

$$
\begin{aligned}
& \vec{v}_{2}^{\perp}=\vec{v}_{2}-\operatorname{proj} v_{1}\left(\vec{v}_{2}\right)=\vec{v}_{2}-\frac{\vec{v}_{1} \vec{v}_{2}}{\vec{v}_{1} \vec{v}_{1}} \\
& {[\begin{array}{lll}
\vec{v}_{1} & \vec{v}_{2}
\end{array} \underbrace{\left[\begin{array}{ll}
\vec{v}_{1} & \vec{v}_{2}^{+}
\end{array}\right] \quad \text { dat. douser wot }} \begin{array}{l}
\text { change ! }
\end{array}}
\end{aligned}
$$

subtract $\frac{\vec{v}_{1} \cdot \vec{v}_{2}}{\vec{v}_{1} \cdot \vec{v}_{1}}$ times col 1

$$
\begin{aligned}
& \vec{u}_{1}=\frac{1}{\sqrt{1^{2}+1 k^{2}+t^{2}}} \cdot\left[\begin{array}{l}
1 \\
1 \\
i
\end{array}\right]=\frac{\frac{1}{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]}{\left[\begin{array}{l}
0
\end{array}\right]} \\
& \vec{v}_{2}^{\perp}=\vec{v}_{2}-\left(\vec{v}_{2} \cdot \vec{u}_{1}\right) \vec{u}_{-}=\left[\begin{array}{c}
6 \\
4 \\
6 \\
6
\end{array}\right]-\frac{1}{2}(6+4+6+4) \cdot \frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right]
\end{aligned}
$$

$$
-\operatorname{ker}\left(A^{\top}\right)=\operatorname{im}(A)^{\perp} \quad \operatorname{im}\left(A^{\top}\right)=\operatorname{kan}(A)^{+} \text {?? }
$$

- no least squenes on midterm!
${ }^{3}$ Cords me not a focus
011
projection y v

$$
\operatorname{prgiv}_{v}(\vec{x})=\vec{x}^{\prime \prime}
$$

\underline{Q} bass for V^{+}?
basis for $\operatorname{m}\left[\vec{v}_{1},-, \vec{v}_{r}\right]^{\neq}$

$$
=\operatorname{kar}\left[\begin{array}{c}
-\theta_{1} \\
\vdots \\
\theta_{1}
\end{array}\right]
$$

