42. Consider an $n \times m$ matrix

$\operatorname{det}\left(A^{\top} A\right)$
where Q is an $n \times m$ matrix with orthonormal columns and R is an upper triangular $m \times m$ matrix with positive diagonal entries $r_{11}, \ldots, r_{m m}$. Express $\operatorname{det}\left(A^{T} A\right)$ in
terms of the scalars $r_{i i}$. What can you say about the sign terms of the scalars $r_{i i}$. What can you say about the sign
of $\operatorname{det}\left(A^{T} A\right)$?
"Row roughen "

$$
=\operatorname{det}(\cdots \cdots \cdots) \operatorname{det}\left(\left[\begin{array}{ll}
\infty \\
\cdots
\end{array}\right)\right.
$$

48. Consider an invertible $n \times n$ matrix A. Can you write A
as $A=L Q$, where L is a lower triangular matrix and
Q is orthogonal? Hint: Consider the $Q R$ factorization
of A^{T}.
49. $A^{\top} A=R^{\top} \underbrace{Q^{\top} Q R}=R^{\top} R$
$48 \quad A^{\top}=Q R$? Mos!
Went $A=L \cdot Q$
Trampoce both sides:

$$
\begin{aligned}
& \left(A^{\top}\right)^{\top}=R^{\top} Q^{\top} \\
& A=\underbrace{R^{\top}}_{\substack{\text { Anereman } \\
\text { Grander }}} \underbrace{Q^{\top}} \text { corthespmen }
\end{aligned}
$$

When does

$$
\frac{A=Q R ?}{\substack{T \\ \text { orthogond }}}
$$

If A ont los gand:

$$
A=Q \cdot I_{m}
$$

Chen cols of A are lime index.
M orthogonal $\Leftrightarrow M^{T}$ is orthogonal.

$$
\begin{aligned}
& =\left(r_{11} \cdots r_{m m}\right)^{2} \\
& \text { 47. If } A=Q R \text { is a } Q R \text { factorization, what is the relation- } \\
& \text { ship between } A^{T} A \text { and } R^{T} R \text { ? }
\end{aligned}
$$

37. For the matrix

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \xrightarrow{T} \uparrow \operatorname{lin}(A)=\operatorname{ser}(A)=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\}
$$

describe the images and kernels of the matrices A, A^{2}, and A^{3} geometrically.
38. Consider a square matrix A.
a. What is the relationship among $\operatorname{ker}(A)$ and $\operatorname{ker}\left(A^{2}\right)$?

Are they necessarily equal? Is one of them necessarily contained in the other? More generally, what can you say about $\operatorname{ker}(A), \operatorname{ker}\left(A^{2}\right), \operatorname{ker}\left(A^{3}\right), \ldots$?
b. What can you say about $\operatorname{im}(A), \operatorname{im}\left(A^{2}\right)$, $\operatorname{im}\left(A^{3}\right), \ldots$?
Hint: Exercise 37 is helpful.
$\operatorname{ker}(A) \subseteq \operatorname{ker}\left(A^{2}\right) \leq \operatorname{ker}\left(A^{3}\right) \subseteq \cdots$
Proofi: $\quad \operatorname{Im}(A) \supseteq \operatorname{Im}\left(A^{2}\right) \supseteq \operatorname{Im}\left(A^{3}\right) \supseteq \ldots$
if x eRa($\left.A^{n}\right)$, then $A^{n+1} \vec{x}=A \cdot A^{n} \vec{x}=A \cdot \vec{\delta}=0$. So $\vec{x}=\operatorname{Rer}\left(\mathbb{A}^{n+1}\right)$.
Thus $\operatorname{ker}\left(A^{n}\right) \leq \operatorname{ker}\left(A^{n+1}\right)$
If $x \in \operatorname{im}\left(A^{n+1}\right)$, then $\vec{x}=A^{n+1} \vec{y}$ for $\operatorname{sem} \vec{y} \vec{y}$. So $\vec{x}=A^{n}(A \vec{j})$. So $\vec{x} \in \operatorname{im}\left(A^{n}\right)$ Thus in $\left(A^{n+1}\right)=\min \left(A^{n}\right)$
(assume $\vec{v}_{,}, \vec{v}_{2} \neq 0$)
11. Consider a linear transformation $T(\vec{x})=A \vec{x}$ from \mathbb{R}^{2} to \mathbb{R}^{2}. Suppose for two vectors \vec{v}_{1} and \vec{v}_{2} in \mathbb{R}^{2} we have $\operatorname{det} A$? Justify your answer carefully.

$$
T=\mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}
$$

$$
\operatorname{det}(A)=?
$$

area of $\frac{\text { big parallelogram }}{T \text { (parallelogram formed }}$ by $\left.\vec{v}_{1}, \vec{v}_{2}\right) ~\left(\frac{1}{2}\right)$

$$
\begin{aligned}
& \Rightarrow|\operatorname{let}(A)|=12 \\
& \operatorname{det}(A)>0 \Rightarrow \text { as: } 12 .
\end{aligned}
$$

Let $M=\left[\begin{array}{cc}2 & 0 \\ 1 & -1 \\ 3 & 4\end{array}\right]$. Find an orthonormal basis for the image of M.

