Midterm 2 review

November 1, 2022

42. Consider an $n \times m$ matrix

$$A = QR$$

where Q is an $n \times m$ matrix with orthonormal columns and R is an upper triangular $m \times m$ matrix with positive diagonal entries r_{11}, \ldots, r_{mm} . Express $\det(A^T A)$ in terms of the scalars r_{ii} . What can you say about the sign of $det(A^T A)$?

W (ATA

· lower -triongula (Hint: recall that $(AB)^T = B^T A^T$)

Det

= (T11 - 11 Fmm

- **47.** If A = QR is a QR factorization, what is the relationship between $A^{T}A$ and $R^{T}R$?
- **48.** Consider an invertible $n \times n$ matrix A. Can you write A as A = LQ, where L is a *lower* triangular matrix and Q is orthogonal? *Hint*: Consider the QR factorization of A^T .

$$(AT)^T = R^T Q^T$$

orthogonal A on Hugenel:

nthugenal (MT orthogonal.

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

describe the images and kernels of the matrices A, A^2 , and A^3 geometrically.

38. Consider a square matrix *A*.

- **a.** What is the relationship among $\ker(A)$ and $\ker(A^2)$? Are they necessarily equal? Is one of them necessarily contained in the other? More generally, what can you say about ker(A), $ker(A^2)$, $ker(A^3)$, . . .?
- **b.** What can you say about im(A), $im(A^2)$, $\operatorname{im}(A^3), \ldots$?

Hint: Exercise 37 is helpful.

(A) 2 Im (A2) 2 Dm (A3) 2

Proof 3 reka(An), then Antix = A. Anx = A. 3 =0. So reker Amj. Thus ker (An) = ker(An)

xe im(And), then x=Andy In somey. So x=An(Ay). So x∈ im(An) in (An+1) = im (An)

(assume v, , v, +0)

11. Consider a linear transformation $T(\vec{x}) = A\vec{x}$ from \mathbb{R}^2 to \mathbb{R}^2 . Suppose for two vectors \vec{v}_1 and \vec{v}_2 in \mathbb{R}^2 we have $T(\vec{v}_1) = 3\vec{v}_1$ and $T(\vec{v}_2) = 4\vec{v}_2$. What can you say about det A? Justify your answer carefully.

det(A)=?

T (parallelgram formed)

2

$$\Rightarrow \det(A) = 12$$

$$\det(A) > 0 \Rightarrow as: 12$$

シューショラリンジュラリ

Let
$$M = \begin{bmatrix} 2 & 0 \\ 1 & -1 \\ 3 & 4 \end{bmatrix}$$
. Fin

Let $M = \begin{bmatrix} 2 & 0 \\ 1 & -1 \\ 3 & 4 \end{bmatrix}$. Find an orthonormal basis for the image of M.

Let V be the image of the matrix M above. Let $\vec{v} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$. Find $\operatorname{proj}_V(\vec{v})$.

proj V (v) = (ū,·v) ū, + (t,·v) ū,