7.4 worksheet

Recall from last time:

1. Consider a Markov chain (think: block party) where there are two nodes (houses). At each time interval, 70% of the people at node 1 go to node 2 , and all the people from node 2 go to node 1. Suppose we start with 120 people at node 1 and 50 people at node 2. How many people will there be at each node after a really really long time?

Some closely related questions:
2. Let $A=\left[\begin{array}{cc}4 & -2 \\ 1 & 1\end{array}\right]$, and let $\vec{x}_{0}=\left[\begin{array}{l}4 \\ 3\end{array}\right]$. Find a "closed formula" for $A^{t} \vec{x}_{0}$.
3. Let $A=\left[\begin{array}{cc}4 & -2 \\ 1 & 1\end{array}\right]$. Find a closed formula for A^{t}. (Hint: diagonalize A)

7.5 worksheet

- A complex number is a number of form \qquad , where \qquad , and $i=$ \qquad . The set of all complex numbers is denoted \qquad
- Addition, multiplication, division all work the same as usual:
- $(3+(\sqrt{2}) i)+(5-i)=$ \qquad
- $(2-5 i)-(1-5 i)=$ \qquad
- $(1+3 i)(1-3 i)=$ \qquad
- With complex numbers, there's another important operation called complex conjugation:

For instance:

- $\overline{3-i}=$
- $\overline{5}=$
- One reason conjugation is nice: simplifying fracationsc
- Big important fact (fundamental theorem of algebra): if $f(x)$ is any \qquad , then, using complex numbers, we can:
e.g. $f(x)=x^{4}-9 x^{3}+30 x^{2}-42 x+20=(x-1)(x-2)\left(x^{2}-6 x+10\right)=$
- Another important fact: if $f(x)$ is a polynomial with \qquad and z is a root of $f(x)$, then
- E.g. find all Eigenvalues (real and complex!) of the matrix
$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 3 & -4 \\ 0 & 4 & 3\end{array}\right]$
- What are the eigenvectors?
- Fact: The eigenvalues and eigenvectors of a matrix with real entries come in pairs
- Exercise: find the eigenvalues and eigenvectors of $\left[\begin{array}{cc}11 & -15 \\ 6 & -7\end{array}\right]$.

