7.4 worksheet

Suppose there are four houses hosting a block party, connected to each other like so:

Every hour, some percent of people at one house leave and go to another house, as described by the following diagram (the numbers are slightly changed from last time)

So for instance, the value of $p_{21}=0.3$ means that house 2 will get 30% of the people in house 1 every hour. This process is an example of a Markov process, also called a Markov chain.

1. What proportion of people at house 1 will stay at house 1 after an hour? We call this number p_{11}. evngone in house 1 either stays in house 1, a goes to 2.

$$
p_{11}=0.7
$$

2. In general we let $p_{i i}$ be the proportion of people in house i who decide to stay in house i when the hour changes. Find p_{22}, p_{33}, and p_{44} as well.

$$
\begin{aligned}
& P_{22}=1-(0.2)-(0.05)-(0.7)=0.05 \quad P_{44}=0.7 \\
& P_{33}=0.45
\end{aligned}
$$

3. Let $x_{i}(t)$ be the number of people in house i, t hours after midnight. Let $\vec{x}(t)$ denote the vector $\vec{x}(t)=\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t) \\ x_{3}(t) \\ x_{4}(t)\end{array}\right]$, and let $\vec{x}(0)=\left[\begin{array}{l}100 \rightarrow p p l \text { in house } 1 \text { e } t=0 \\ 300 \\ 500 \\ 200\end{array}\right] \cdot(\vec{x}(t)$ is house 2 example of a vector-valued function: its input is a number t and its output is a vector). Find $x_{2}(1)$.

$$
\begin{equation*}
x_{2}(1)=0.3 x_{1}(0)+0.05 x_{1}(0)+0.15 x_{3}(0)+0.2 x_{4}(0)=40 \tag{160}
\end{equation*}
$$

4. Find a matrix A such that $\vec{x}(t+1)=A \vec{x}(t)$. This is called the transition matrix of the markov process.

$$
\begin{aligned}
& x_{1}(t+1)=0.7 x_{1}(t)+0.2 \cdot x_{2}(t) \\
& x_{2}(t+1)=0.3 x_{1}(t)+0.05 x_{2}(t)+0.15 x_{3}(t)+0.2 x_{4}(t) \\
& x_{3}(t+1)=\quad i^{\text {th }} \text { cols }
\end{aligned}
$$

$$
x_{4}\left(t_{+1}\right)=
$$

$$
\left[\begin{array}{l}
x_{1}(t+1) \\
x_{2}(t+1) \\
x_{3}(t+1) \\
x_{4}(t+1)
\end{array}\right]=\left[\begin{array}{cccc}
0.7 & 0.2 & 0 & 0 \\
0.3 & 0.05 & 0.15 & 0 .+0.2 \\
0 & 0.7 & 0.45 & 12.20 .1 \\
0 & 0.05 & 0.4 & 0.7
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right] \leftarrow
$$

$p_{13}=$? topple in burse 3 gang to harare 1 raw j tells you about arras pointing into hales if
5. Suppose there are x_{1} people at house $1, x_{2}$ people in house 2 , etc. This configuration of people $\vec{x}_{\text {eq }}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$ is called an equilibrium state if $A \vec{x}_{\text {eq }}=\vec{x}_{\text {eq }}$. Is there an equilibrium state to block party described above? Give an example of one. It may be helpful to know that the eigenvectors/eigenvalues of A are:

$$
\begin{aligned}
& \vec{v}_{1}=\left[\begin{array}{c}
0.184 \\
0.276 \\
0.716 \\
1
\end{array}\right], \frac{\lambda_{1}=1}{G A \vec{v}_{1}=1 \cdot \vec{v}_{1}} \quad \vec{v}_{2}=\left[\begin{array}{c}
-0.925 \\
-0.222 \\
0.148
\end{array}\right], \lambda_{2}=0.748 \\
& \vec{v}_{3}=\left[\begin{array}{c}
0.053 \\
-0.102 \\
-0.951 \\
1
\end{array}\right], \lambda_{3}=0.314 \quad \vec{v}_{4}=\left[\begin{array}{c}
-0.416 \\
1.798 \\
-2.381 \\
1
\end{array}\right], \lambda_{4}=-0.163
\end{aligned}
$$

(so A is diagonalizable!)

thawerneruic to be physidly manigfol, we wont passive, megan \#s of pe in the hocus.

$$
1000 v_{1}=\left[\begin{array}{c}
184 \\
276 \\
716 \\
1080
\end{array}\right] \quad \text { is an quilibimime shane. }
$$

 If the houses will approach an quilib. site.
6. Show that $\vec{x}(t)$ gets closer and closer to an equilibrium state \vec{x}_{eq} as t gets bigger and bigger (hint: this is a lot like the foxes and hares problem from the homework! We know $x(t)=A^{t} x(0)$. Write $\vec{x}(0)$ as a linear combination of eigenvectors)

$$
\begin{aligned}
& \sim \vec{x}(0)=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}+c_{4} \vec{v}_{4} \\
& \vec{x}(t)=A^{t} \vec{x}(0)=A^{t}\left(c_{1} \vec{v}_{1}+c_{2} v_{2}+c_{3} \vec{v}_{3}+c_{4} \vec{v}_{4}\right)=c_{1} x_{1}^{t} \vec{v}_{1}+c_{1} \lambda_{1}^{t} t_{2}+c_{3}\left(v_{3} v_{3} v_{5}+c_{1} v_{1} \vec{v}_{1} \vec{v}_{4}\right. \\
& 0
\end{aligned}
$$

\Rightarrow if t is really king, $\lambda_{2}^{t}, \lambda_{3}{ }^{t}, \lambda_{4}^{t} \approx 0$, so $\vec{x}(t) \approx c_{1} \vec{\nu}_{1}$ for same c_{1}
7. Fact: This always happens! Every ${ }^{1}$ Markov chain has an equilibrium state $\stackrel{\rightharpoonup}{x_{e q}}$. ©ifren any inv er state. initial configuarion $\vec{x}(0)$, the vector $\vec{x}(t)$ will always get closer and closer to (a positive mutliple of) $\vec{x}_{\text {eq }}$.

- The reason is the same as before:

If A is the transition matrix,
the theories is that 1 is an exienvelue of $A,|\lambda|<1$ for all other eigenvalues λ, and the eigenvector w/ eigenvalue 1 will (perren-Frobenius the)
Let's solve the following problems using some similar ideas: have a!!

Let's solve the following problems using
For the matrices A and the vectors \bar{x}_{0} in Exercises 13
through 19 , find closed formulas for ATx_{0}, where t is an positive entries arbitrary positive integer. Follow the strategy outlined in Theorem 7.1.6 and illustrated in Example 1. In Exercises 16 through 19, feel free to use technology.
13. $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right], \bar{x}_{0}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$ Find eigenvectors of $\left.A, v_{1}\right], \lambda_{1}=3, v_{2}=\left(\frac{1}{3}\right), \lambda_{2}=-2$

For the matrices A anat the vectors \vec{x}_{0} in Exercises 25 through 22, find $\lim _{t \rightarrow \infty}\left(A^{t} \vec{x}_{0}\right)$. Feel free to use Theorem 7.4.T.
25. $A=\left[\begin{array}{ll}0.3 & 1 \\ 0.7 & 0\end{array}\right], \vec{x}_{U}=\left[\begin{array}{l}0.64 \\ 0.36\end{array}\right]$
${ }^{1}$ Technically, we need this to be a regular Markov chain, meaning every node of the Markov chain is reachable from every other node

Problem \#13:

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right], \quad \vec{x}_{0}=\left[\begin{array}{l}
3 \\
2
\end{array}\right], \quad \text { Ind } \quad A^{t} x_{0}
$$

- First, find Eigenvects of A.
- To do so, find eigenvalues:

$$
\left.\begin{array}{l}
\quad \operatorname{det}\left(A-\lambda I_{2}\right)=\operatorname{det}\left(\begin{array}{cc}
1-\lambda & 2 \\
0 & 3-\lambda
\end{array}\right)=(1-\lambda)(3-\lambda) . \\
\lambda=1, \lambda=3
\end{array}\right] \quad \operatorname{kan}\left(A-1 \cdot I_{2}\right)=\operatorname{kan}\left(\begin{array}{ll}
0 & 2 \\
0 & 2
\end{array}\right)=\operatorname{span}\left[\begin{array}{l}
0 \\
1
\end{array}\right) .
$$

- Write x_{0} in terms of eigenvectors:

$$
\begin{aligned}
& X_{0}=c_{1}\left[\begin{array}{l}
0 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \leadsto\left[\begin{array}{ll:l}
0 & 1 & 3 \\
1 & 1 & 2
\end{array}\right] \\
& \stackrel{\text { RREF }}{\sim} \leadsto\left[\begin{array}{cc:c}
1 & 0 & -1 \\
0 & 1 & 3
\end{array}\right] \quad \begin{array}{l}
c_{1}=-1 \\
c_{2}=3
\end{array} \\
& \Rightarrow x_{0}=-\left[\begin{array}{l}
0 \\
1
\end{array}\right]+3[1]
\end{aligned}
$$

- So $A^{t} x_{0}=A^{t}(-[0]+3[1])=-A^{t}\left[\begin{array}{l}0 \\ 1\end{array}\right]+3 A^{t}\left[\begin{array}{l}1 \\ 1\end{array}\right]$

