Math 2147.3 worksheet 2

We saw that the algebraic multiplicity of an eigenvalue is always \qquad than its geometric multiplicity.

1. For each of the following matrices find: the characteristic polynomial, the algebraic multiplicity of 2 , and the geometric multiplicity of 2 :
(a) $A=\left[\begin{array}{lllll}2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2\end{array}\right]$
(b) $B=\left[\begin{array}{lllll}2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2\end{array}\right]$ (the $(2,3)$ entry is the only one that changed)
(c) $B=\left[\begin{array}{lllll}2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2\end{array}\right]$
2. Suppose D is a matrix with characteristic polynomial $p_{D}(x)=(x-2)^{4}(x+1)^{2}\left(x^{2}+1\right)$. What can you say about the geometric multiplicity of $\lambda=2$ for D ?
While we're at it, what are the dimensions of the matrix D ? What is the determinant of D ?

Let's prove this fact!
Theorem If A is a square matrix and λ is an eigenvalue of A, then $\operatorname{gmult}(\lambda) \leqslant \operatorname{algmult}(\lambda)$
Proof idea: (1) we can "partially diagonalize" A using the eigenvectors in E_{λ}, (2) the theorem is clear for this partially diagonal matrix, and (3) it follows that the theorem holds for A.

Proof

- Suppose λ is an eigenvalue of A with $\operatorname{gmult}(\lambda)=k$. We want to show that:
- Because gmult $(\lambda)=k$, we can find linearly independent eigenvectors
- We can then extend this linearly independent set to a basis of \mathbb{R}^{n} :
- With respect to this basis, A looks like:
$S^{-1} A S=$
- Thus the characteristic polynomial of $S^{-1} A S$ is:
- But by last time, we know:

7.4 worksheet

Suppose there are four houses hosting a block party, connected to each other like so:

Every hour, some percent of people at one house leave and go to another house, as described by the following diagram:

So for instance, the value of $p_{21}=0.3$ means that house 2 will get 30% of the people in house 1 every hour. This process is an example of a Markov process, also called a Markov chain.

1. What proportion of people at house 1 will stay at house 1 after an hour? We call this number p_{11}.
2. In general we let $p_{i i}$ be the proportion of people in house i who decide to stay in house i when the hour changes. Find p_{22}, p_{33}, and p_{44} as well.
3. Let $x_{i}(t)$ be the number of people in house i, t hours after midnight. Let $\vec{x}(t)$ denote the vector

$$
\vec{x}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

(this is an example of a vector-valued function: its input is a number t and its output is a vector $\vec{x}(t))$. Suppose that

$$
\vec{x}(0)=\left[\begin{array}{l}
100 \\
300 \\
500 \\
200
\end{array}\right]
$$

Find $x_{2}(1)$.
4. Find a matrix A such that $\vec{x}(t+1)=A \vec{x}(t)$. This is called the transition matrix of the markov process.
5. Albert takes some measurements of how many people are leaving each house, and gets the following diagram:

Does this diagram make physical sense? Why or why not?
6. Explain the following fact: no matter what numbers $p_{i j}$ we have in our transition matrix A, the columns of A have to add up to 1 .
7. Explain why $\left.\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\right]^{T}$ is an eigenvector of A^{T}. What is its eigenvalue?

