Math 2147.3 worksheet

Facts and defs: Let A be an $n \times n$ matrix

- An eigenvector of A is a nonzero $\vec{v} \in \mathbb{R}^{n}$ such that $A \vec{v}=\lambda \vec{v}$ for some $\lambda \in \mathbb{R}$.
- The function $p_{A}(x)=\operatorname{det}\left(A-x I_{n}\right)$ is a polynomial in x, called the characteristic polynomial of A. A number $\lambda \in \mathbb{R}$ is an eigvenvalue of A if and only if $p_{A}(\lambda)=0$. The algebraic multiplicity of λ is the biggest power of $(\lambda-x)$ dividing $p_{A}(x)$.
- The eigenspace of λ is $E_{\lambda}=\operatorname{ker}\left(A-\lambda I_{n}\right)$. This is the set of eigenvectors of A with eigenvalue λ (along with the zero vector, which doesn't count as an eigenvector).
- A is diagonalizable if \mathbb{R}^{n} has a basis consisting of eigenvectors of A. If $\mathscr{B}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ is such a basis, and $S=\left[\vec{v}_{1}, \ldots, \vec{v}_{n}\right]$, then
$S^{-1} A S=$

1. Find the eigenvectors of the following matrices. Are they diagonalizable? What are the algebraic multiplicites of the eigenvalues?
(a) $\left[\begin{array}{ccc}0 & -2 & 2 \\ -3 & -2 & 0 \\ 3 & 0 & 2\end{array}\right]$
(b) $\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$
(c) $\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 2 & 0 \\ -1 & -1 & 2\end{array}\right]$

Definition: the geometric multiplicty of an eigenvalue λ is \qquad

Fact: a matrix is diagonalizable if and only if \qquad

Fact: the geometric multiplicity of an eigenvalue is always \qquad than its algebraic multiplicity.

In other words, each additional (linearly independent) eigenvector for λ gives an additional factor of \qquad dividing \qquad

Let's try to prove this fact!
2. Find the determinant of the following matrix (it's not as bad as it looks!)
$\left[\begin{array}{ccccc}1 & 0 & 0 & 2 & 4 \\ 0 & 2 & 0 & 6 & 9 \\ 0 & 0 & 3 & 1 & -2 \\ 0 & 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 3 & 0\end{array}\right]$

In general:
3. Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$. Let S be an invertible matrix. What is $\operatorname{det}\left(S^{-1} A S\right)$?
4. Let A be a square matrix and $B=S^{-1} A S$. Show that $p_{A}(x)=p_{B}(x)$.

Page 3

Now let's prove the theorem!
Theorem If A is a square matrix and λ is an eigenvalue of A, then $\operatorname{gmult}(\lambda) \leqslant \operatorname{algmult}(\lambda)$ Proof

Page 4

