Midterm 2 review

November 1, 2022
42. Consider an $n \times m$ matrix

$$
A=Q R,
$$

where Q is an $n \times m$ matrix with orthonormal columns and R is an upper triangular $m \times m$ matrix with positive diagonal entries $r_{11}, \ldots, r_{m m}$. Express $\operatorname{det}\left(A^{T} A\right)$ in terms of the scalars $r_{i i}$. What can you say about the sign of $\operatorname{det}\left(A^{T} A\right)$?
(Hint: recall that $(A B)^{T}=B^{T} A^{T}$)
47. If $A=Q R$ is a $Q R$ factorization, what is the relationship between $A^{T} A$ and $R^{T} R$?
48. Consider an invertible $n \times n$ matrix A. Can you write A as $A=L Q$, where L is a lower triangular matrix and Q is orthogonal? Hint: Consider the $Q R$ factorization of A^{T}.
37. For the matrix

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

describe the images and kernels of the matrices A, A^{2}, and A^{3} geometrically.
38. Consider a square matrix A.
a. What is the relationship among $\operatorname{ker}(A)$ and $\operatorname{ker}\left(A^{2}\right)$? Are they necessarily equal? Is one of them necessarily contained in the other? More generally, what can you say about $\operatorname{ker}(A), \operatorname{ker}\left(A^{2}\right), \operatorname{ker}\left(A^{3}\right), \ldots ?$
b. What can you say about $\operatorname{im}(A), \operatorname{im}\left(A^{2}\right)$, $\operatorname{im}\left(A^{3}\right), \ldots$?
Hint: Exercise 37 is helpful.
11. Consider a linear transformation $T(\vec{x})=A \vec{x}$ from \mathbb{R}^{2} to \mathbb{R}^{2}. Suppose for two vectors \vec{v}_{1} and \vec{v}_{2} in \mathbb{R}^{2} we have $T\left(\vec{v}_{1}\right)=3 \vec{v}_{1}$ and $T\left(\vec{v}_{2}\right)=4 \vec{v}_{2}$. What can you say about $\operatorname{det} A$? Justify your answer carefully.

Let $M=\left[\begin{array}{cc}2 & 0 \\ 1 & -1 \\ 3 & 4\end{array}\right]$. Find an orthonormal basis for the image of M.

Let V be the image of the matrix M above. Let $\vec{v}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$. Find $\operatorname{proj}_{V}(\vec{v})$.

