Math 214-007 Singular Value Decomposition worksheet

1. Let A have the singular value decomposition

$$
A=\left[\begin{array}{cccc}
\mid & \mid & \mid & \mid \\
\vec{u}_{1} & \vec{u}_{2} & \vec{u}_{3} & \vec{u}_{4} \\
\mid & \mid & \mid & \mid
\end{array}\right]\left[\begin{array}{ccc}
5 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
- & \vec{v}_{1}^{\top} & - \\
- & \vec{v}_{2}^{\top} & - \\
- & \vec{v}_{3}^{\top} & -
\end{array}\right]
$$

Which vectors \vec{v}_{i} are in the kernel of A ? Which vectors \vec{u}_{i} are in the image of A ?
2. Let B have the singular value decomposition

$$
A=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\vec{u}_{1} & \vec{u}_{2} & \vec{u}_{3} \\
\mid & \mid & \mid
\end{array}\right]\left[\begin{array}{cccc}
5 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
- & \vec{v}_{1}^{\top} & - \\
- & \vec{v}_{2}^{\top} & - \\
- & \vec{v}_{3}^{\top} & - \\
- & \vec{v}_{4}^{\top} & -
\end{array}\right]
$$

Which vectors \vec{v}_{i} are in the kernel of B ? Which vectors \vec{u}_{i} are in the image of A ?
3. Explain how to use the SVD of a matrix to quickly see: its rank, its nullity, an orthonormal basis of its image, and an orthonormal basis of its kernel
4. True or false! (Taken from the textbook)
(a) If A is a 2×2 matrix with singular values 3 and 5 , then there is some $\vec{w} \in \mathbb{R}^{2}$ with $\|\vec{w}\|=1$ and $\|A \vec{w}\|=2$
(b) If A is a 2×2 matrix with singular values 3 and 5 , then there is some $\vec{w} \in \mathbb{R}^{2}$ with $\|\vec{w}\|=1$ and $\|A \vec{w}\|=4$
(c) The product of the n singular values of an $n \times n$ matrix must be $|\operatorname{det} A|$.

