A bunch of practice problems

Derivatives

1. $\frac{d}{dx} \sec(e^{\sin x})$

Solution: Use the chain rule a bunch of times: $\sec(e^{\sin x}) \tan(e^{\sin x}) e^{\sin x} \cos x$

2. $\frac{d}{dx}(\sin x)^{\cos x}$

Solution: Start by taking natural logs: let $y = (\sin x)^{\cos x}$. Then $\ln y = \cos x \ln \sin x$. This means $\frac{1}{y} \frac{dy}{dx} = -\sin x \ln \sin x + \cos x \frac{1}{\sin x} \cos^x$. Multiply both sides by $y = (\sin x)^{\cos x}$ to get the answer.

3. $\frac{d}{dx}\log_3(x^{2x})$

Solution: Start by simplifying: $\log_3(x^{2x}) = 2x \log_3(x) = 2x \frac{\ln x}{\ln 3}$.

4. $\frac{d}{dx} \frac{(x+2)^{3/2} e^{x^2}}{\sqrt{x^3+2}}$

Solution: Use logarithmic differentiation, similar to problem 2.

Integrals

5.
$$\int \frac{1}{x^2 + 6x + 10} dx$$

Solution: Start by completing the square

$$6. \quad \int \frac{2x+6}{x^2+6x+10} \, dx$$

Solution: Use a the substitution $u = x^2 + 6x + 10$.

 $7. \int x^2 e^x \, dx$

Solution: Use integration by parts with $u = x^2$, $dv = e^x dx$.

8.
$$\int \frac{\ln x}{x^3} \, dx$$

Solution: Use integration by parts with $u = \ln x$, $dv = \frac{1}{x^3} dx$.

$$9. \int \frac{1}{\sqrt{x^2 + 4x + 5}} \, dx$$

Solution: Start by completing the square. Then use a trigonometric substitution.

10. $\int \sec^2 x \, dx$

Solution: By the formula sheet, $\frac{d}{dx} \tan x = \sec^2 x$. So the answer is $\tan x$.

11. $\int \tan^2 x \sec^2 x \, dx$

Solution: Use the substitution $u = \tan x$, $du = \sec^2 x \, dx$.