Final Exam Review

Differential equations

1. Salt water at a concentration of $2 \mathrm{~kg} / \mathrm{L}$ flows into a tank at a rate of $6 \mathrm{~L} / \mathrm{min}$. Salt water flows out of this tank at a rate of $4 \mathrm{~L} / \mathrm{min}$. Assuming the tank starts with 10 Liters of salt water, write a differential equation describing the amount of salt in the tank after t minutes.

Solution: $\frac{d y}{d x}=12-\frac{4 y}{10+2 t}$
2. Salt water at a concentration of $4 \mathrm{~kg} / \mathrm{L}$ flows into a tank at a rate of $2 \mathrm{~L} / \mathrm{min}$. Salt water flows out of this tank at a rate of $2 \mathrm{~L} / \mathrm{min}$. Assuming the tank starts with 20 Liters of salt water, write a differential equation describing the amount of salt in the tank after t minutes.

$$
\text { Solution: } \frac{d y}{d x}=8-\frac{y}{10}
$$

3. Solve the differential equation: $\frac{d y}{d x}+x y=x, y(1)=2$.

Solution: Multiply by the integrating factor $e^{\int x d x}$ to solve. $y=1+e^{\left(1-x^{2}\right) / 2}$
4. Solve the differential equation: $\frac{d y}{d x}=2 y, y(0)=3$

Solution: $y=3 e^{2 x}$
5. Solve the differential equation: $\frac{d y}{d x}-\frac{y}{x}=x^{2}, y(1)=4$.

Solution: $y=\frac{x^{3}}{2}+\frac{3}{2} x$

Integrals

6. $\int e^{\cos x} \sin x d x$

Solution: Use the substitution $u=\cos x, d u=-\sin x d x$.
7. $\int x \cot ^{2} x d x$

Solution: Use the trig identity $\cot ^{2} x=1-\csc ^{2} x$. To find the integral of $\int x \csc ^{2} x d x$, use integration by parts with $u=x, d v=\csc ^{2} x d x$.
8. $\int \frac{d x}{\sqrt{16+4 x-2 x^{2}}}$

Solution: Start by completing the square. The answer is $\frac{1}{\sqrt{2}} \arcsin \left(\frac{x-1}{3}\right)$.
9. $\int \sin ^{3}(3 x) d x$

Solution: $\sin ^{3}(3 x)=\sin ^{2}(3 x) \sin (3 x)=\left(1-\cos ^{2}(3 x)\right) \sin (3 x)$. From there, use the substitution $u=\cos (3 x), d u=-3 \sin (3 x)$.
10. $\int \frac{\tan x}{\ln |\cos x|} d x$

Solution: Use the substitution $u=\ln |\cos x|, d u=-\tan x$.
11. $\int \frac{x}{\sqrt{x+5}} d x$

Solution: Use the substitution $u=\sqrt{x+5}$, so that $u^{2}-5=x$ and $2 d u=d x$.
12. $\int \frac{x^{3}}{1-x^{2}} d x$

Solution: Use polynomial long division to write $\frac{x^{3}}{1-x^{2}}=-x+\frac{x}{1-x^{2}}$. Use the substitution $u=1-x^{2}$ to find $\int \frac{x}{1-x^{2}} d x$. Or you can use a partial fraction decomposition.

Infinite Series

Determine whether the following series converge or diverge. Try and see if you can guess what the answer is going to be before using a convergence test to confirm your answer.
13. $\sum_{n=1}^{\infty} \frac{n!}{5^{n}}$

Solution: Diverges. Use the ratio test
14. $\sum_{n=1}^{\infty} \frac{n^{5}}{n^{6}+1}$

Solution: Diverges. Use the limit comparison test, and compare to $1 / n$
15. $\sum_{n=1}^{\infty} 2\left(\frac{3}{5}\right)^{n}$

Solution: Converges. This is a geometric series.
16. $\sum_{n=1}^{\infty} \frac{1}{\sqrt[6]{n^{7}}}$

Solution: Converges. This is a p-series with $p=7 / 6$.
17. $\sum_{n=1}^{\infty}(-1)^{n} \frac{n+2}{n+3}$

Solution: Diverges. This is because of the nth term test.
18. $\sum_{n=1}^{\infty}(-1)^{n-1} e^{-n}$

Solution: Converges. This is a geometric series: $e^{-n}=\left(\frac{1}{e}\right)^{n}$.
19. $\sum_{n=1}^{\infty} \frac{n^{2}+2 n+1}{n^{3}+\ln n}$

Solution: Diverges. Use the limit comparison test. Compare to $1 / n$.
20. $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^{2}+5}$

Solution: Converges. Use the limit comparison test. Compare to $1 / n^{3 / 2}$.
21. $\sum_{n=1}^{\infty} \frac{n^{3} 3^{n}}{(n+1)!}$

Solution: Converges. Use the ratio test.

Power series

Find the convergence sets of the following series
22. $\sum_{n=0}^{\infty} \frac{x^{n}}{n^{3}+1}$

Solution: $-1 \leqslant x \leqslant 1$
23. $\sum_{n=0}^{\infty} \frac{(-2)^{n+1} x^{n}}{2 n+3}$

Solution: $-\frac{1}{2}<x \leqslant \frac{1}{2}$
24. $\sum_{n=0}^{\infty} \frac{(-1)^{n}(x-4)^{n}}{n+1}$

Solution: $3<x \leqslant 5$
25. $\sum_{n=0}^{\infty} \frac{3^{n} x^{3 n}}{(3 n)!}$

Solution: $-\infty<x<\infty$
26. $\sum_{n=0}^{\infty} \frac{n!(x+1)^{n}}{3^{n}}$

Solution: $x=-1$

Taylor Series

Find the first four terms of the following Taylor series:
27. Taylor series of $\sin ^{2} x$ centered at $x=0$

Solution: x^{2} (the other terms are 0).
28. Taylor series of e^{x} centered at $x=2$

Solution: $e^{2}+e^{2}(x-2)+\frac{e^{2}(x-2)^{2}}{2}+\frac{e^{2}(x-2)^{3}}{6}$
29. Taylor series of $\sin x+\cos x$ centered at $x=\frac{\pi}{2}$

Solution: $1-\left(x-\frac{\pi}{2}\right)-\frac{\left(x-\frac{\pi}{2}\right)^{2}}{2}+\frac{\left(x-\frac{\pi}{2}\right)^{3}}{6}$
30. Taylor series of $e^{-x}-1+x$ centered at $x=0$.

Solution: $\frac{x^{2}}{2}-\frac{x^{3}}{6}$
31. Taylor series of $\frac{1}{1-x^{3}}$ centered at $x=0$.

Solution: $1+x^{3}$

