Final Exam Review

Differential equations

1. Salt water at a concentration of 2 kg/L flows into a tank at a rate of 6 L/min. Salt water flows out of this tank at a rate of 4 L/min. Assuming the tank starts with 10 Liters of salt water, write a differential equation describing the amount of salt in the tank after t minutes.

Solution: $\frac{dy}{dx} = 12 - \frac{4y}{10 + 2t}$

2. Salt water at a concentration of 4 kg/L flows into a tank at a rate of 2 L/min. Salt water flows out of this tank at a rate of 2 L/min. Assuming the tank starts with 20 Liters of salt water, write a differential equation describing the amount of salt in the tank after t minutes.

Solution: $\frac{dy}{dx} = 8 - \frac{y}{10}$

3. Solve the differential equation: $\frac{dy}{dx} + xy = x, y(1) = 2.$

Solution: Multiply by the integrating factor $e^{\int x \, dx}$ to solve. $y = 1 + e^{(1-x^2)/2}$

4. Solve the differential equation: $\frac{dy}{dx} = 2y, y(0) = 3$

Solution: $y = 3e^{2x}$

5. Solve the differential equation: $\frac{dy}{dx} - \frac{y}{x} = x^2$, y(1) = 4.

Solution: $y = \frac{x^3}{2} + \frac{3}{2}x$

Integrals

6.
$$\int e^{\cos x} \sin x \, dx$$

Solution: Use the substitution $u = \cos x$, $du = -\sin x \, dx$.

 $7. \ \int x \cot^2 x \, dx$

Solution: Use the trig identity $\cot^2 x = 1 - \csc^2 x$. To find the integral of $\int x \csc^2 x \, dx$, use integration by parts with u = x, $dv = \csc^2 x \, dx$.

$$8. \quad \int \frac{dx}{\sqrt{16+4x-2x^2}}$$

Solution: Start by completing the square. The answer is $\frac{1}{\sqrt{2}} \arcsin\left(\frac{x-1}{3}\right)$.

9. $\int \sin^3(3x) \, dx$

Solution: $\sin^3(3x) = \sin^2(3x)\sin(3x) = (1 - \cos^2(3x))\sin(3x)$. From there, use the substitution $u = \cos(3x), du = -3\sin(3x)$.

10.
$$\int \frac{\tan x}{\ln|\cos x|} \, dx$$

Solution: Use the substitution $u = \ln |\cos x|$, $du = -\tan x$.

11.
$$\int \frac{x}{\sqrt{x+5}} \, dx$$

Solution: Use the substitution $u = \sqrt{x+5}$, so that $u^2 - 5 = x$ and 2 du = dx.

$$12. \quad \int \frac{x^3}{1-x^2} \, dx$$

Solution: Use polynomial long division to write $\frac{x^3}{1-x^2} = -x + \frac{x}{1-x^2}$. Use the substitution $u = 1 - x^2$ to find $\int \frac{x}{1-x^2} dx$. Or you can use a partial fraction decomposition.

Infinite Series

Determine whether the following series converge or diverge. Try and see if you can guess what the answer is going to be before using a convergence test to confirm your answer.

13.
$$\sum_{n=1}^{\infty} \frac{n!}{5^n}$$

Solution: Diverges. Use the ratio test

14.
$$\sum_{n=1}^{\infty} \frac{n^5}{n^6 + 1}$$

Solution: Diverges. Use the limit comparison test, and compare to 1/n

15.
$$\sum_{n=1}^{\infty} 2\left(\frac{3}{5}\right)^n$$

Solution: Converges. This is a geometric series.

16.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[6]{n^7}}$$

Solution: Converges. This is a *p*-series with p = 7/6.

17. $\sum_{n=1}^{\infty} (-1)^n \frac{n+2}{n+3}$

Solution: Diverges. This is because of the nth term test.

18.
$$\sum_{n=1}^{\infty} (-1)^{n-1} e^{-n}$$

Solution: Converges. This is a geometric series: $e^{-n} = \left(\frac{1}{e}\right)^n$.

19. $\sum_{n=1}^{\infty} \frac{n^2 + 2n + 1}{n^3 + \ln n}$

Solution: Diverges. Use the limit comparison test. Compare to 1/n.

$$20. \quad \sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2 + 5}$$

Solution: Converges. Use the limit comparison test. Compare to $1/n^{3/2}$.

21.
$$\sum_{n=1}^{\infty} \frac{n^3 3^n}{(n+1)!}$$

Solution: Converges. Use the ratio test.

Power series

Find the convergence sets of the following series

$$22. \quad \sum_{n=0}^{\infty} \frac{x^n}{n^3 + 1}$$

Solution:
$$-1 \leq x \leq 1$$

23.
$$\sum_{n=0}^{\infty} \frac{(-2)^{n+1} x^n}{2n+3}$$

Solution: $-\frac{1}{2} < x \leq \frac{1}{2}$

24.
$$\sum_{n=0}^{\infty} \frac{(-1)^n (x-4)^n}{n+1}$$

Solution: $3 < x \leq 5$

25.
$$\sum_{n=0}^{\infty} \frac{3^n x^{3n}}{(3n)!}$$

Solution: $-\infty < x < \infty$

26.
$$\sum_{n=0}^{\infty} \frac{n!(x+1)^n}{3^n}$$

Solution: x = -1

Taylor Series

Find the first four terms of the following Taylor series:

27. Taylor series of $\sin^2 x$ centered at x = 0

Solution: x^2 (the other terms are 0).

28. Taylor series of e^x centered at x = 2

Solution:
$$e^2 + e^2(x-2) + \frac{e^2(x-2)^2}{2} + \frac{e^2(x-2)^3}{6}$$

29. Taylor series of $\sin x + \cos x$ centered at $x = \frac{\pi}{2}$

Solution:
$$1 - (x - \frac{\pi}{2}) - \frac{(x - \frac{\pi}{2})^2}{2} + \frac{(x - \frac{\pi}{2})^3}{6}$$

30. Taylor series of $e^{-x} - 1 + x$ centered at x = 0.

Solution:
$$\frac{x^2}{2} - \frac{x^3}{6}$$

31. Taylor series of $\frac{1}{1-x^3}$ centered at x = 0.

Solution: $1 + x^3$