Marden's theorem

Daniel Smolkin

Department of Mathematics
University of Utah
GSAC Colloquium
January 14, 2014

Statement of the theorem

Theorem 1

Let p be a degree-3 polynomial over \mathbb{C}. Suppose the roots of p form a triangle in the complex plane. Then the roots of p^{\prime} are the foci of the steiner inellipse of this triangle.

- Ellipse: $\{p: d(p, a)+d(p, b)=r\}$ for some a, b called foci and some r called the major axis length
- Steiner inellipse: the unique ellipse tangent to the three sides of a triangle at their midpoints

Ellipse properties

Optical property

Ellipse properties

Uniqueness property: given a pair of points and a line, there is at most one ellipse with foci at those points tangent to that line

Ellipse properties

$\angle F_{1} P G_{1}=\angle F_{2} P G_{2}$

Outline (following Kalman)

- Let T be the triangle defined by the roots of p and let E be an ellipse with foci at the roots of p^{\prime}. If E intersects a side of T at its midpoint, then...

Outline (following Kalman)

- Let T be the triangle defined by the roots of p and let E be an ellipse with foci at the roots of p^{\prime}. If E intersects a side of T at its midpoint, then...
- E is tangent to that side (at its midpoint)

Outline (following Kalman)

- Let T be the triangle defined by the roots of p and let E be an ellipse with foci at the roots of p^{\prime}. If E intersects a side of T at its midpoint, then...
- E is tangent to that side (at its midpoint)
- E is tangent to the other two sides of T as well

Outline (following Kalman)

- Let T be the triangle defined by the roots of p and let E be an ellipse with foci at the roots of p^{\prime}. If E intersects a side of T at its midpoint, then...
- E is tangent to that side (at its midpoint)
- E is tangent to the other two sides of T as well
- E is tangent to every side at its midpoint

Outline in pictures

Outline in pictures

Outline in pictures

Outline in pictures

Step 1
Let T be the triangle defined by the roots of p and let E be an ellipse with foci at the roots of p^{\prime}. If E intersects a side of T at its midpoint, then E is tangent to that side.

- Thus, the unique ellipse that is tangent to that side and has foci at the roots of p^{\prime} is tangent to that side at its midpoint (what we really need).

Step 1

Let T be the triangle defined by the roots of p and let E be an ellipse with foci at the roots of p^{\prime}. If E intersects a side of T at its midpoint, then E is tangent to that side.

- Thus, the unique ellipse that is tangent to that side and has foci at the roots of p^{\prime} is tangent to that side at its midpoint (what we really need).
Proof:
- WLOG, can rotate, scale, translate, reflect (exercise)

Step 1

Let T be the triangle defined by the roots of p and let E be an ellipse with foci at the roots of p^{\prime}. If E intersects a side of T at its midpoint, then E is tangent to that side.

- Thus, the unique ellipse that is tangent to that side and has foci at the roots of p^{\prime} is tangent to that side at its midpoint (what we really need).
Proof:
- WLOG, can rotate, scale, translate, reflect (exercise)
- So we can assume the following picture:

Step 1

Let T be the triangle defined by the roots of p and let E be an ellipse with foci at the roots of p^{\prime}. If E intersects a side of T at its midpoint, then E is tangent to that side.

- Thus, the unique ellipse that is tangent to that side and has foci at the roots of p^{\prime} is tangent to that side at its midpoint (what we really need).
Proof:
- WLOG, can rotate, scale, translate, reflect (exercise)
- So we can assume the following picture:

Step 1

- Roots $=\{1,-1, w\}$

Step 1

- Roots $=\{1,-1, w\}$
- $\Rightarrow p(z)=z^{3}-w z^{2}-z, \quad p^{\prime}(z)=3 z^{2}-2 w z-1$

Step 1

- Roots $=\{1,-1, w\}$
- $\Rightarrow p(z)=z^{3}-w z^{2}-z, \quad p^{\prime}(z)=3 z^{2}-2 w z-1$
- Note:

$$
\begin{aligned}
& \left(\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}\right)+\left(\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}\right)=-\frac{b}{a}, \\
& \left(\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}\right) \cdot\left(\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}\right)=\frac{c}{a}
\end{aligned}
$$

- $z_{1} z_{2}=-1 / 3 \Rightarrow \operatorname{Arg} z_{1}+\operatorname{Arg} z_{2}=\pi(\bmod 2 \pi \mathbb{Z})$

- $z_{1} z_{2}=-1 / 3 \Rightarrow \operatorname{Arg} z_{1}+\operatorname{Arg} z_{2}=\pi(\bmod 2 \pi \mathbb{Z})$
- $z_{1}+z_{2}=2 w / 3 \Rightarrow \operatorname{Im} z_{1}>0$ or $\operatorname{Im} z_{2}>0$

- $z_{1} z_{2}=-1 / 3 \Rightarrow \operatorname{Arg} z_{1}+\operatorname{Arg} z_{2}=\pi(\bmod 2 \pi \mathbb{Z})$
- $z_{1}+z_{2}=2 w / 3 \Rightarrow \operatorname{Im} z_{1}>0$ or $\operatorname{Im} z_{2}>0$
- So $0<\operatorname{Arg} z_{1}, \operatorname{Arg} z_{2}<\pi$ and $\operatorname{Arg} z_{1}+\operatorname{Arg} z_{2}=\pi$

- $z_{1} z_{2}=-1 / 3 \Rightarrow \operatorname{Arg} z_{1}+\operatorname{Arg} z_{2}=\pi(\bmod 2 \pi \mathbb{Z})$
- $z_{1}+z_{2}=2 w / 3 \Rightarrow \operatorname{Im} z_{1}>0$ or $\operatorname{Im} z_{2}>0$
- So $0<\operatorname{Arg} z_{1}, \operatorname{Arg} z_{2}<\pi$ and $\operatorname{Arg} z_{1}+\operatorname{Arg} z_{2}=\pi$
- By the optical property of ellipses, x-axis is tangent to our ellipse

Outline in pictures

Let T be the triangle defined by the roots of p and let E be an ellipse with foci at the roots of p^{\prime}. If E is tangent to a side of T at its midpoint, then E is tangent to every side of T.

Step 2

Let T be the triangle defined by the roots of p and let E be an ellipse with foci at the roots of p^{\prime}. If E is tangent to a side of T at its midpoint, then E is tangent to every side of T.

Proof:

- Assume the following picture:

Step 2

- $p(z)=z^{3}-(1+w) z^{2}+w z, \quad p^{\prime}(z)=3 z^{2}-2(1+w) z+w$

Step 2

- $p(z)=z^{3}-(1+w) z^{2}+w z, \quad p^{\prime}(z)=3 z^{2}-2(1+w) z+w$
- $z_{1}+z_{2}=\frac{2}{3}(1+w)$, so one focus is above x-axis.

Step 2

- $p(z)=z^{3}-(1+w) z^{2}+w z, \quad p^{\prime}(z)=3 z^{2}-2(1+w) z+w$
- $z_{1}+z_{2}=\frac{2}{3}(1+w)$, so one focus is above x-axis.
- Since ellipse tangent to x-axis, both foci on one side

Step 2

- $z_{1} z_{2}=w / 3$

Step 2

- $z_{1} z_{2}=w / 3 \Rightarrow \operatorname{Arg} z_{1}+\operatorname{Arg} z_{2}=\operatorname{Arg} w$.

Step 2

- $z_{1} z_{2}=w / 3 \Rightarrow \operatorname{Arg} z_{1}+\operatorname{Arg} z_{2}=\operatorname{Arg} w$.
- The line between 0 and w is tangent to the ellipse by third ellipse property.
$\angle F_{1} P G_{1}=\angle F_{2} P G_{2}$

Outline in pictures

Step 3

E is tangent to each side at its midpoint

Step 3

E is tangent to each side at its midpoint

- By step 1 , there is some E^{\prime} with same foci tangent to another side at its midpoint

Step 3

E is tangent to each side at its midpoint

- By step 1 , there is some E^{\prime} with same foci tangent to another side at its midpoint
- By uniqueness property, $E=E^{\prime} \quad \square$.

Empirical evidence

References

- Kalman, Dan. "An Elementary Proof of Marden's Theorem". The American Mathematical Monthly, vol. 115, no. 4, April 2008, pp. 330338.
- My website (slides and python script) math.utah.edu/~smolkin/talks

