Birational classification of algebraic varieties

Daniel Smolkin
March 11, 2017
University of Utah, Department of Mathematics

Premise

- Humans love to categorize things

Premise

- Humans love to categorize things
- E.g. how many kinds of animals are there?

Premise

- Same thing, but with shapes: how many kinds of shapes are there?

Premise

- Same thing, but with shapes: how many kinds of shapes are there?

Cube

Premise

- Same thing, but with shapes: how many kinds of shapes are there?

Cube

Sphere

Premise

- Same thing, but with shapes: how many kinds of shapes are there?

Cube

???

Polynomials

- 1630: Descartes and Fermat come up with the idea of coordinates and graphing

			y	y	$(2,3)$		
				-3			
$(-3,1)$			1				
				$(0,0)$		x	
-3	-2	-1		1	2	3	
				-1			
		$-1.5,-2.5)$	-3				

- This lets us talk about polynomials

Polynomials

- Polynomials:

$$
\begin{gathered}
x^{2}+3 y^{2}-1 \\
w^{10}-2 y^{2} x^{3} z^{5}+1
\end{gathered}
$$

(as opposed to $\sin (x), e^{x}$, etc.)

Polynomials

- Polynomials:

$$
\begin{gathered}
x^{2}+3 y^{2}-1 \\
w^{10}-2 y^{2} x^{3} z^{5}+1
\end{gathered}
$$

(as opposed to $\sin (x), e^{x}$, etc.)

- The Greeks had no way of thinking about $10^{\text {th }}$ powers!

Polynomials

- Polynomials:

$$
\begin{gathered}
x^{2}+3 y^{2}-1 \\
w^{10}-2 y^{2} x^{3} z^{5}+1
\end{gathered}
$$

(as opposed to $\sin (x), e^{x}$, etc.)

- The Greeks had no way of thinking about $10^{\text {th }}$ powers!
- This also allows us to work with 4-dimensional shapes and beyond

Polynomials

- Polynomials:

$$
\begin{gathered}
x^{2}+3 y^{2}-1 \\
w^{10}-2 y^{2} x^{3} z^{5}+1
\end{gathered}
$$

(as opposed to $\sin (x), e^{x}$, etc.)

- The Greeks had no way of thinking about $10^{\text {th }}$ powers!
- This also allows us to work with 4-dimensional shapes and beyond
- Through abstraction, we can consider more general situations

Shapes from polynomials

Shapes from polynomials

Shapes from polynomials

Shapes from polynomials

$y=x^{2}$

$z^{2}=x y$

$$
\begin{gathered}
64(x-1)\left(x^{4}-4 x^{3}-10 x^{2} y^{2}-4 x^{2}+16 x\right. \\
\left.-20 x y^{2}+5 y^{4}-20 y^{2}+16\right)= \\
5 \sqrt{5-\sqrt{5}}(2 z-\sqrt{5-\sqrt{5}}) \\
\left(4\left(x^{2}+y^{2}+z^{2}\right)+(1+3 \sqrt{5})\right)^{2}
\end{gathered}
$$

- Algebraic variety: A shape you get by graphing a polynomial (or several)
- Algebraic geometry: The study of these shapes

Shapes from polynomials

$y=x^{2} \quad z^{2}=x y$

$$
z^{2}=x y
$$

$$
\begin{gathered}
64(x-1)\left(x^{4}-4 x^{3}-10 x^{2} y^{2}-4 x^{2}+16 x\right. \\
\left.-20 x y^{2}+5 y^{4}-20 y^{2}+16\right)= \\
5 \sqrt{5-\sqrt{5}}(2 z-\sqrt{5-\sqrt{5}}) \\
\left(4\left(x^{2}+y^{2}+z^{2}\right)+(1+3 \sqrt{5})\right)^{2}
\end{gathered}
$$

- Algebraic variety: A shape you get by graphing a polynomial (or several)
- Algebraic geometry: The study of these shapes
- Natural question: what kinds of algebraic varieties are there?

Birational equivalence

- In order to have a meaningful classification of anything, we need a notion of equivalence

Birational equivalence

- In order to have a meaningful classification of anything, we need a notion of equivalence
- Think of these as "species"
- If our definition of species is too narrow or too broad then our classification becomes boring

Birational equivalence

- In order to have a meaningful classification of anything, we need a notion of equivalence
- Think of these as "species"
- If our definition of species is too narrow or too broad then our classification becomes boring
- The definition of "species" algebraic geometers use today was devised by Riemann (1851)

Birational equivalence

- Birational equivalence: Two algebraic varieties are birationally equivalent if you can "bend" one into the other after removing some points.

Birational equivalence

- Birational equivalence: Two algebraic varieties are birationally equivalent if you can "bend" one into the other after removing some points.

Birational equivalence

- Birational equivalence: Two algebraic varieties are birationally equivalent if you can "bend" one into the other after removing some points.

Birational equivalence

Birationally equivalent:

Birational equivalence

Birationally equivalent:

Not birationally equivalent:

Birational equivalence

Birational classification of algebraic varieties: listing all the different species ("birational equivalence classes") of algebraic varieties you can get

The answer

- So, what are all the species of algebraic variety?

The answer

- So, what are all the species of algebraic variety?
- It's a very active area of research! Comparing species is hard

The answer

- So, what are all the species of algebraic variety?
- It's a very active area of research! Comparing species is hard
- Idea (Mori, 1985): perhaps each species of algebraic variety has a particularly simple member, called a minimal model

The answer

- So, what are all the species of algebraic variety?
- It's a very active area of research! Comparing species is hard
- Idea (Mori, 1985): perhaps each species of algebraic variety has a particularly simple member, called a minimal model
- We can check if two species are the same by comparing their minimal models

Recent progress

- Does Mori's idea work?

Recent progress

- Does Mori's idea work?
- 1D: Riemann (1851)

Recent progress

- Does Mori's idea work?
- 1D: Riemann (1851)
- 2D: Castelnuovo, Enriques, Kodaira (1910s thru 1960s)

Recent progress

- Does Mori's idea work?
- 1D: Riemann (1851)
- 2D: Castelnuovo, Enriques, Kodaira (1910s thru 1960s)
- 3D: Birkar-Cascini-Hacon-McKernan (2010)

JOURNAL OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 23, Number 2, April 2010, Pages 405-468
S 0894-0347(09)00649-3
Article electronically published on November 13, 2009

EXISTENCE OF MINIMAL MODELS FOR VARIETIES OF LOG GENERAL TYPE

CAUCHER BIRKAR, PAOLO CASCINI, CHRISTOPHER D. HACON, AND JAMES M ${ }^{\mathrm{C}}$ KERNAN

Recent progress

- Does Mori's idea work?
- 1D: Riemann (1851)
- 2D: Castelnuovo, Enriques, Kodaira (1910s thru 1960s)
- 3D: Birkar-Cascini-Hacon-McKernan (2010)

JOURNAL OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 23, Number 2, April 2010, Pages 405-468
S 0894-0347(09)00649-3
Article electronically published on November 13, 2009

EXISTENCE OF MINIMAL MODELS FOR VARIETIES OF LOG GENERAL TYPE

CAUCHER BIRKAR, PAOLO CASCINI, CHRISTOPHER D. HACON, AND JAMES M^{C} KERNAN

- 4D+: an open problem!

Thanks for listening!

