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Intro

Commutative algebra is concerned with the study of these abstract things
called

Rings (generalizations of the integers)

Modules (generalizations of vector spaces)

Ideals (special kinds of modules)

This talk will explore where these notions came from
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Ancient Greece

Let a, b, c be integers. If p is prime and p divides ab, then p divides a or p
divides b. This gives unique prime factorization—each integer a can be
written in a unique (up to order) way as a product of primes

a = p1p2 · · · pn

Uniqueness means that if a = q1q2 · · · qm is another prime factorization,
then m = n and each qj is equal to a unique pi .
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We say that a and b are relatively prime if their greatest common divisor,
or gcd, is 1. Equivalently, any prime appearing in the factorization of a
does not appear in the factorization of b.
Uniqueness of prime factorization implies:

Theorem

if ab = c2 and gcd(a, b) = 1 then a and b are both perfect squares.
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Theorem

if ab = c2 and gcd(a, b) = 1 then a and b are both perfect squares.

Proof.

Let a = p1 · · · pn, b = q1 · · · qm, and c = r1 · · · rl be prime
factorizations of a, b, and c .

Then c2 = ab = p1 · · · pnq1 · · · qm is a prime factorization of c2

But c2 = (r1 · · · rl )2 = r1r1 · · · rl rl is another prime factorization of c2.
By uniqueness, each ri either appears in p1, · · · , pn, q1, · · · , qm

So each ri appears in p1, · · · , pn or in q1, · · · , qm. Since
gcd(a, b) = 1, if one copy of ri appears in p1, · · · , pn then the second
one does too.

Thus a = r1r1 · · · rj rj = (r1 · · · rj )2 for some j .

Similarly, if ab = cn and gcd(a, b) = 1, then a and b are nth powers
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Much of mathematics was (and is) about asking such questions about the
integers.

In 1770, Euler noticed that it’s often useful to use complex numbers to
prove things about the integers. For instance, he solved the following
conjecture, due to Fermat(1601–1665): 27 is the only perfect cube that’s
2 bigger than a perfect sqaure. In other words, the only integer solution to

y3 = x2 + 2

is (x , y) = (±5, 3)
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Euler proved this by using
√
−2 to factor

x2 + 2 =
(
x +
√
−2
) (

x −
√
−2
)
. So he worked with numbers of the

form a + b
√
−2 where a, b are integers

Similarly, Gabriel Lamé used the number ζn = e2πi/n in a proposed
solution to Fermat’s last thoerem in 1847.

This lead Dedekind to define a domain of algebraic integers as any set
that’s just the integers plus some other stuff in 1871.

Technical aside: let K be a finite field extension of Q. Then Dedekind
defined the domain of algebraic integers of K to be the integral
closure of Z in K ).

Later, Hilbert called these sets Zahlrings, or “number rings”, in 1892

Wikipedia: “ring” is a synonym for “group.” Think “drug ring”
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Notation: Z[α] means “take the integers and throw in α.” So the set of
numbers of the form a + b

√
−2 is denoted Z[

√
−2].
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So that’s where rings come from!

The story of ideals is more complicated

Let’s look at Euler’s proof that the only integer solution to
y3 = x2 + 2 is (x , y) = (±5, 3)
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y3 = x2 + 2

We can factor x2 + 2 =
(
x +
√
−2
) (

x −
√
−2
)
. Then Euler treats the

quantities x −
√
−2 and x +

√
−2 as though they were integers: he asserts

they’re “relatively prime,” and since their product is a cube, they must be
cubes themselves. Thus we can say

x +
√
−2 = (a + b

√
−2)3 = a3 + 3a2b

√
−2− 6ab2 − 2b3

√
−2

Equating real and imaginary parts,

x = a3 − 6ab2
√
−2 =

(
3a2b − 2b3

)√
−2

Thus 1 = b
(
3a2 − 2b2

)
. Thus b = ±1 and 3a2 − 2b2 = ±1, so a = ±1.

Thus x = a3 − 6ab2 = ±5 and y = 3
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The question: Does Euler’s approach really work? When does it work?

First question: yes

Second question: it’s an open problem! (Sort of) We’ll get back to
this.

Rings where you have unique factorization into primes are called
unique factorization domains.
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In this case, we’re considering the ring
{
a + b

√
−2 | a, b integers

}
,

aka Z[
√
−2].

Let x | y denote “x divides y”

In analogy with the integers, a + b
√
−2 is a “prime” of Z[

√
−2] if it

satisfies
(a + b

√
−2) |

(
c + d

√
−2
)(

e + f
√
−2
)
⇒(

a + b
√
−2
)
|
(
c + d

√
−2
)

or
(
a + b

√
−2
)
|
(
e + f

√
−2
)

(Recall: an integer p is prime if p | ab ⇔ p | a or p | b)
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So to make Euler’s proof legit, we need to find out what the primes of
Z
[√
−2
]

are and whether each number factorizes into these primes
uniquely

It’s not obvious! E.g. 5 is not prime in Z[
√
−2]:

5 =
(

1 +
√
−2
)(

1−
√
−2
)

and 5 doesn’t divide either factor on the right. Can see this by taking
absolute values of each side
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Fermat’s last theorem: there are no integer solutions to xn + yn = zn for
n > 2
In 1847, Gabriel Lamé gave a (false) proof of Fermat’s last theorem using
the same approach as Euler. He begins by writing yn = zn − xn. Then he
factors the right hand side:

zn − xn = (z − x) (z − ζnx)
(
z − ζ2nx

)
· · ·
(
z − ζn−1

n x
)

where

ζn = cos

(
2π

n

)
+ i sin

(
2π

n

)
So far so good. But then Lamé makes the same assumption as Euler: that
each term in the factorization is relatively prime to all of the others, and
that this implies each term on the right is an nth power. Not true!
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Kummer (1810–1893) showed three years earlier that this fails for
n = 23; in fact, it fails for n any prime greater than 19.

So the question of which rings have unique factorization was very
important

Kummer invented ideal numbers to figure this out, and maybe to
salvage Lamè’s proof.

The idea—suppose our ring doesn’t have unique factorization. Can
we introduce new numbers until it does?
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“In the theory of rational integers, one can recognise the essential
constitution of a number without effecting its decomposition into prime
factors, observing only how it behaves as a divisor.”–Dedekind

If there is some b with a - b but a | b2, then some prime must appear
twice in the factorization of a. Intuition: “a only divides b after you
double some of the primes in b’s factorization”

Suppose a | b2c2 only when a | b2 or a | c2. Then a is either 1, a
prime, or the square of a prime. (It’s easy to show by constructing
counterexamples)

So if both of these hold, then a = p2 for some prime p
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Ideal numbers

The number 2 has both of these properties when you’re working in
Z[
√
−5]:

For instance, 2 does not divide 1 +
√
−5, but 2 does divide(

1 +
√
−5
)2

= −4 + 2
√
−5.

Moreover, let ω = a + b
√
−5. Then ω − ω̄ = 2b

√
−5, so ω ≡ ω̄ mod

2. I.e., ω is divisible by 2 precisely when ω̄ is divisible by 2.

Thus ω2 ≡ |ω|2 modulo 2. So if 2 divides ω2ω′2, then 2 divides their
norm |ωω′|2 = |ω|2|ω′|2

2 is prime in the integers so that means 2 divides |ω|2 or |ω′|2. So 2
divides ω2 or ω′2.
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The number 2 has both of these properties when you’re working in
Z[
√
−5]:

For instance, 2 does not divide 1 +
√
−5, but 2 does divide(

1 +
√
−5
)2

= −4 + 2
√
−5.

Moreover, let ω = a + b
√
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So by analogy with integers, 2 should be p2 for some prime p.

But 2 is not a square in Z[
√
−5]!

So Kummer says: so what? Just declare that 2 = α2. α is just a
formal symbol.

We can define what it means to be “divisible by α”: we say

α | ω whenever 2 | ω2
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Similar deductions show that 3 and 7 behave like products of distinct
primes.

3 = β1β2

7 = γ1γ2

Now, the number 6 has two factorizations in Z[
√
−5]. . .

6 = 2 · 3 =
(

1 +
√
−5
)
·
(

1−
√
−5
)

But only one in terms of these ideal numbers! One can show
αβ1 = 1 +

√
−5 and αβ2 = 1−

√
−5, whence

6 = 2 · 3 = α2β1β2

=
(

1 +
√
−5
)(

1−
√
−5
)

= αβ1αβ2
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Kummer showed that rings like Z [ζn] (the context of Lamé’s proof) have
unique factorization in terms of these ideal numbers. Thus Z [ζn] is itself a
UFD if there are no ideal numbers.

Aside: you could just as easily say α =
√

2, and similarly,
β1 =

√
−2 +

√
−5, β2 =

√
−2−

√
−5 and work in the ring

Z[
√
−5, α, β1, β2, γ1, γ2]. Indeed, this was the approach of Kronecker

(1823–1891), who was a constructivist. But this is a departure from the
philosophy of studying numbers by their divisibility properties. Further,
Dedekind complains that this approach requires thinking about a more
complicated ring, and that this choice of ring extension is arbitrary.
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Ideal numbers worked well from Kronecker, but they’re far from ideal:

What is an ideal number? There’s no actual definition

Dedekind: “The greatest circumspection is required to avoid being
led to premature conclusions. In particular, the notion of product of
arbitrary factors, actual or ideal, cannot be exactly defind without
going into minute detail.”

Further, this only solves the problem of unique factorization in Lamé’s case
of cyclotomic integers.
Dedekind’s insight: instead of talking about ideal numbers, just talk about
all the actual numbers that are divisible by them!
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Recall that ω = a + b
√
−5 is said to be divisible by α if and only if

2 | ω2.

Further, ω2 ≡ |ω|2 mod 2, and |ω|2 = a2 + 5b2 is even if and only if
a ≡ b mod 2.

So α | ω if and only if a = b + 2z for some integer z .

Thus the set of numbers divisible by α is{
b + 2z + b

√
−5 | b, z ∈ Z

}
=
{

2z +
(
1 +
√
−5
)
b | z , b ∈ Z

}
So this is all linear combinations of 2 and 1 +

√
−5 with integer

coefficients. Dedekind denotes this set by
[
2, 1 +

√
−5
]
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This set has the following properties:

I r ∈ Z
[√
−5
]
, x ∈

[
2, 1 +

√
−5
]
⇒ rx ∈

[
2, 1 +

√
−5
]

I x , y ∈ [2, 1 +
√
−5]⇒ x + y ∈ [2, 1 +

√
−5]

Then Dedekind does something unprecedented—he defines an ideal
as any subset of a ring that satisfies these properties!

Aside: he also defined a module to be any subset of a ring satisfying
the second property
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These sorts of axiomatic definitions
are standard in mathematics now,
but no one made them since the
Greeks until Dedekind
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So we get from ideal numbers to ideals by taking the set of all
numbers divisible by the ideal number. Can do this for regular
numbers as well: the set of all numbers divisible by 2 is{

2z | z ∈ Z[
√
−5]
}

Note that if α | β then the ideal corresponding to α will contain the
ideal corresponding to β. So we say that I divides J if I | J. So
Dedekind defines a prime ideal to be an ideal that’s not contained in
any other ideal, except Z[

√
−5] itself.

Finally, the product of the ideals corresponding to α and β should the
the ideal corresponding to the product αβ. So we define the product
of two ideals: IJ = {

∑
finite aibi | ai ∈ I , bi ∈ J}.
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Dedekind then proved the following:

Theorem

Each ideal I can be uniquely written as a product of prime ideals,

I = P1 . . .Pn

This theorem holds true everywhere that Dedekind called a ring. We now
call these rings Dedekind domains
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We can use this result to determine whether a given domain has
Unique Factorization

Namely, if every ideal has just one generator, then unique factorization
holds! Every factorization of a number gives a factorization of the
ideal it generates. The converse holds too, in this case.

This leads to the theory of class numbers
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Class numbers

The set of ideals of any ring forms a monoid: it’s closed under

multiplication. If your ring R is a dedekind domain (think Z
[√

D
]
), then

you can define the multiplicative inverse of an ideal I to be

I−1 = {r ∈ frac R | rI ⊆ R}

This gives an abelian group G under multiplication. The principal ideals
and their inverses form a subgroup P. Then the ideal class group of R is
defined to be G/P. The size of |G/P| is called the class number of R. So
we’ve shown that if R is a Dedekind domain, then R is a UFD if and only
if its class number is 1.
Big open problem: when is the class number of Z[

√
d ] equal to 1? Are

there infinitely many d where this is true?
If d < 0, then the class number is one only in the following cases:

d = −1,−2,−3,−7,−11,−19,−43,−67,−163
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Modern definition of a ring

Meanwhile, algebraic geometers were doing very similar work, only
they were thinking about polynomials

Adolf Fraenkel gave an axiomatic definition of a ring in 1914 that
included both cases

Emmy Noether noticed this definition was not quite right, and
published the modern definition in 1921
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The modern definition of a ring

A ring is a set A with two functions p : A× A→ A and t : A× A→ A
satisfying:

1 p(a,b) = p(b,a)

2 there is some element 0 ∈ A satisfying p(0,a) = a for all a ∈ A

3 For each a ∈ A there is some element −a ∈ A satisying p(a,-a) = 0

4 p(a, p(b,c)) = p(p(a,b), c) for all a, b, c

5 t(a,t(b,c)) = t(t(a,b), c)

6 There is some element 1 in A satisfying t(a,1) = t(1, a) = a for all
a ∈ A.

7 t(a, p(b,c)) = p(t(a,b), t(a, c))

8 t(p(a,b), c) = p(t(a,c), t(b,c))
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At the same time Noether invented the theory of rings defined this way.
She figured out the hypotheses you need for prime factorization of ideals
(Dedekind). Namely:

Ascending chain condition

Normality

Every prime ideal is maximal

And found a weaker form of prime factorization (algebraic geometers)
when you just have the first hypothesis.
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Happy birthday Emmy Noether!

Daniel Smolkin (Utah) A brief history of rings March 24, 2015 32 / 33



References

http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/

Ring_theory.html

Dedekind, Richard. The Theory of Algebraic Integers. Translated by
John Stillwell. 1996

Edwards, Harold M. Fermat’s last theorem: a genetic intro. to alg.
number theory. 1977

Kleiner, Israel. A History of Abstract Algebra. 2007

Daniel Smolkin (Utah) A brief history of rings March 24, 2015 33 / 33

http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Ring_theory.html
http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Ring_theory.html

