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These notes are based heavily on [2], and to a lesser extent on [5] and [6]. In these notes, we’ll discuss how
to measure singularities in characterstic 0 and then discuss how to measure them in characteristic p. Finally,
we’ll state some theorems showing these methods are compatible with each other.

1 Characteristic 0

We start with a basic question: given a polynomial f ∈ C[z1, · · · , zn] with a singularity at 0, how can we
measure the “singularness” of this polynomial in a precise way? In other words: we can look at various
singularities and see intuitively that some singularities are worse than others. For instance, it feels like a
transverse self-intersection is probably not as bad as a cusp. And a sharper cusp feels more singular than a
rather gradual cusp:

Figure 1: Graphs of the equations “xy = 0,” “y2 − x3 = 0,” and “y2 − x11 = 0.” We
see that the singularities get worse from left to right. These graphs were drawn using
Geogebra (https://www.geogebra.org)

The question becomes finding an invariant for different singularities that allows us to say that the singu-
larity of f = xy (a simple normal crossing) is more mild than that of f = y2 − x3 (a cusp).

The most näıve approach for measuring singularities is to use what’s called the multiplicity of the poly-
nomial f . By definition, f is singular at 0 if all of its first-order partial derivatives vanish:

f(0) =
∂f

∂z1
(0) = · · · = ∂f

∂zn
(0) = 0.

We say that f has multiplicity d at 0 if all of the (d− 1)st order partial derivatives vanish. In other words,

Mult0(f) = min

{
d

∣∣∣∣ ∂i1 · · · ∂inf∂zi11 · · · ∂z
in
n

(0) 6= 0

}
This invariant is too coarse, however: the multiplicities f = xy and f = y2 − x3 are both 2.

1.1 Analytic approach

The analytic approach is to examine the the integrability of 1/|f | around 0. If f approaches zero at the
order of x1/2, for instance, the function 1/|f | is integrable. But if f approaches 0 more quickly, say to the
order of x, then 1/|f | won’t be integrable. This motivates the following definition:
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lct0(f) = sup

{
λ

∣∣∣∣∣
∫
Bε(0)

1

|f |2λ
<∞ for ε sufficiently small

}
The abbreviation “lct” stands for “log canonical threshold”; this terminology comes from connections with
birational geometry that we’ll explore later. The nicer our singularity, the longer 1/|f |2λ will be integrable,
so nicer singularities should have larger log canonical thresholds.

The log canonical threshold is easily computed for monomials.

Lemma 1.1. Let f = za11 · · · zann . Then lct0(f) = min
{

1
ai

}
.

Proof. This is easy to see by changing to polar coordinates: using |zi|2 = r2, we see∫
1

|f |2λ
dz =

∫
r1 · · · rn

(ra11 . . . rann )
2λ
dr ∧ dθ

It follows from Fubini’s theorem (and calc 2) that this integral is finite if and only if 1− 2aiλ > −1 for all i;
in other words, this integral is finite if and only if λ < min 1/ai.

1.2 Algebro-geometric approach

Hironaka’s theorem tells us that, for any polynomial f ∈ C[z1, · · · , zn], we can reduce the computation of
lct(f) to the case where f is a monomial:

Theorem 1.2 (Hironaka). Let f ∈ C[z1, · · · , zn] be arbitrary. Then there exists a smooth variety X and a
proper birational map π : X → Cn such that f ◦ π and JacC(π) are monomials locally analytically.

Such a variety X is called a log resolution of the pair (Cn, f). Now, we know that for any f , we have∫
Bε

1

|f |2λ
=

∫
π−1(Bε)

JacR(π)

|f ◦ π|2λ
.

This is just the change of coordinates formula from differential topology. Further, since π is proper, the
closure of π−1(Bε) is compact, so we can check the convergence of the integral on a neighborhood of the
vanishing locus of f ◦ π. Now, suppose JacC(π) = zk11 · · · zkmm and f ◦ π = za11 · · · zamm . Since JacR = | JacC |2,
this integral becomes ∫

π−1(Bε)

JacR(π)

|f ◦ π|2λ
=

∫
pi−1(Bε)

∣∣∣zk11 · · · zkmm ∣∣∣2
|za11 · · · z

am
m |2λ

so we see that this integral converges exactly when 2λai − 2ki > 1. Thus we get a formula

lct0(f) = min
i

ki + 1

ai

Thus we can compute log canonical thresholds by computing the log resolutions guaranteed by Hironaka’s
theorem.

For those in the know, the divisor of JacC π is Kπ, the relative canonical divisor of X over Cn. So it’s
not hard to see that

lct(f) = sup {λ | dKπ − λπ∗ div(f)e ≥ 0}

Example: Let’s compute the lct of f = x2 − y3. The first step is to find a log resolution of f , which we
can do by successively blowing-up the origin.

In the above figure, each πi is a blow-up at the origin, and C̃ is the strict transform of the curve C. We
have a log resolution precisely when the divisors Kπ and π∗ div f have simple-normal crossings, i.e., no more
than two components intersect in one ponit, and all intersections are transverse. So we see that one blow-up
is insufficient because the intersection of C̃ and E1 is not transverse. A pair of blow-ups is also insufficient,
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since then we have three components intersecting at one point. So we see that we need three blow-ups to
get a monomialization.

By Hartshorne exercise II.8.5, we know that Kπi
= Ei, where Ei is the exceptional divisor of πi. Further,

it’s easy to see that Ka◦b = Kb + b∗Ka for any two maps a, b. By repeatedly applying these rules, we find
that

Kπ1◦π2◦π3 = E1 + 2E2 + 4E3,

whereas
(π1 ◦ π2 ◦ π3)∗ div f = C̃ + 2E1 + 3E2 + 6E3

Then lct(f) is the minimum of the numbers ki+1
ai

as (ki, ai) ranges among the pairs (0, 1), (1, 2), (2, 3), (4, 6).

So we see that lct(f) = 5
6 .

Remark: Similar computations show that lct(xy) = 1 and lct(y2 − x11) = 13
22 , so we’ve succeeded in

finding an invariant that distinguishes these three cases. And, as we remarked earlier, the nicer singularities
have larger log canonical thresholds.

We get a richer invariant by considering multiplier ideals J (fλ) := π∗OX (dKπ − λFπe). We recover the
lct from these ideals by noticing

lct(f) = sup
{
λ
∣∣J (

fλ
)

= C[x1, · · · , xn]
}
.

2 Characteristic p

Now we have a polynomial f in Fp [x1, · · · , xn] with a singularity at the origin and we wish to find a way
of measuring this singularity. If we try to adapt the techniques used in the characteristic 0 setting, we
immediately get stuck—there’s no good way to integrate in characteristic p, and don’t have resolution of
singularities anymore (at least, not that we know!). The answer lies in the Frobenius endomorphism. We
start with some

2.1 Preliminaries.

Let k be a field of characteristic p and let R be an integral domain over k. Let F : R → R denote the
Frobenius endomorphism; that is F (x) = xp for all x ∈ R. After fixing an algebraic closure R̄ of fracR,
and we can define R1/pe :=

{
x1/p

e ∣∣ x ∈ R} for all e ∈ Z≥0. Here, x1/p
e

is the unique (pe)th root of x in R̄

(exercise: check this really is unique!). Note that we have obvious inclusions R ⊆ R1/p ⊆ R1/p2 ⊆ · · · , and
also that we have a natural isomorphism R ∼= R1/pe as rings (but not as R-modules!).

The R-module structure of R1/pe for various e is perhaps the main object of study in characteristic-p
algebraic geometry. We have the following definition:

Definition 2.1. A ring R is said to be F -finite if R1/p is a finitely-generated R-module. Equivalently, R is
said to be F -finite if R1/pe is a finitely-generated R-module for all e ≥ 0.
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Aside. We define F e∗R to be the R-module that’s equal to R as a set, but with the R-module
structure defined by r • x = rp

e

x. In other words, F e∗R has the module structure that we get by

restricting scalars along the map R
F e

−−→ R. The notation “F e∗ ” comes from the language of OX -
modules. Then F e∗R and R1/pe are canonically isomorphic as R-modules. This gives us another
way to think about R1/pe . We get a natural inclusion R→ F e∗R by sending x to xp

e

.
Yet another paradigm arises by noticing that the R-module structure of R1/pe is in some sense

equivalent to the natural Rp
e

-module structure of R. Thus, many authors will refer to the three
morphisms,

R→ R1/pe

R→ F e∗R

Rp
e

→ R

interchangeably.

Most rings one encounters in the wild are F -finite. Indeed, for any F -finite field k, all rings essentially
of finite type over k are F -finite.

Example. If R = Fp [x1, · · · , xn], then R1/pe = Fp[x1/p
e

1 , · · · , x1/p
e

n ]. This is a free R-module with basis{
x
a1/p

e

1 · · ·xan/p
e

n

∣∣∣ 0 ≤ ai < pe
}
.

This shows that polynomial rings over finite fields are F -finite. More generally, for any ring S and any ideal
I ⊆ S [x1, · · · , xn], we have (

S [x1, · · · , xn]

I

)1/pe

=
S1/pe

[
x
1/pe

1 , · · · , x1/p
e

n

]
I1/pe

(1)

where I1/p
e

is defined analogously to R1/pe above, and for any multiplicative set W , we have(
W−1S

)1/pe
= W−1

(
S1/pe

)
. (2)

Thus, rings of essentially finite type over F -finite rings are F -finite.

2.2 F -pure thresholds

When we were working over the complex numbers, we were able to measure the singularities of polynomials
f by finding the largest number c > 0 such that∫

Bε(0)

1

|f |c
<∞

for ε < 0 sufficiently small. Now, we don’t have a good theory of integration in characteristic p. However,
we observe that the above integral is certainly finite if f c is nonzero at 0. This leads us to the following,
very näıve definition: given f ∈ Fp[x1, · · · , xn], we set

fpt(f) = {sup c ∈ R | f c 6∈ m} .

where m is the maximal ideal of the origin. The astute reader will notice that this definition is not just
näıve, but nonsensical: what does it even mean to raise f to some non-integer power? The machinery we
developed in the previous section gets us close enough: we can define, for all a, e ∈ Z:

fa/p
e

:= (fa)
1/pe

=
(
f1/p

e
)a

Definition 2.2. Let (R,m) be a local domain with characteristic p > 0 and let f ∈ R. Then the F -pure
threshold of f is given by

fpt(f) := sup

{
c =

a

pe

∣∣∣∣ a, e ∈ Z, f c 6∈ m ·R1/pe
}
.
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The ideal m ·R1/pe is not to be confused with m1/pe ; the former ideal is generally much smaller than the
latter. The remarkable thing is that this näıve definition ends up being a good notion of the singularities of
f , and is closely related to the characteristic-0 notions.

Example. Let f = x2 − y3 ∈ Fp[x, y]. Then the F -pure threshold of f depends on the prime p in the
following way:

fpt(f) =


1
2 , p = 2
2
3 , p = 3
5
6 , p ≡ 1 mod 6
5
6 −

1
6p , p ≡ 5 mod 6

Let’s prove the case where p ≡ 1 mod 6 to get a flavor for how these calculations work. First, we expand
the product (x2 − y3)a to get

(x2 − y3)a =

a∑
i=0

(
a

i

)
(−1)(a−i)x2iy3(a−i)

Then we take pe-th roots on each side. Since Frobenius is a ring endomorphism, we can just do this term-
by-term. Since Fp is a perfect field, this doesn’t affect the binomial coefficients:

(x2 − y3)a/p
e

=

a∑
i=0

(
a

i

)
(−1)(a−i)x2i/p

e

y3(a−i)/p
e

Now, each of the terms above has a different bi-degree, so terms can only cancel out if one of those binomial
coefficients vanish. So we see that (x2 − y3)a/p

e

is not in m precisely when there exists some i such that:

2i < pe, 3(a− i) < pe,

(
a

i

)
6≡ 0 mod p

(Otherwise, we could factor out either an x or a y from each of the terms.) This leads to a few bounds on
the F -pure threshold of f : if a/pe < 1/2, then we can satisfy the inequalities above by setting i = a. Thus,
fpt(f) ≥ 1/2. On the other hand, fpt(f) ≤ 5/6, since if we have any pair of numbers (a, i) satisfying the
inequalities above, then we can show:

a ≤ pe − 1

3
+ i ≤ pe − 1

3
+
pe − 1

2
=

5pe

6
− 5

6

and so
a

pe
≤ 5

6
− 5

6pe
.

To prove the case when p ≡ 1 mod 6, we set a = 5pe−5
6 (which is an integer), and i = pe−1

2 . We see that

2i = pe − 1 < p2

and

3(a− i) = 3

(
5pe − 5

6
− 3pe − 3

6

)
=

1

2
(2pe − 2) < pe.

Now we just need to show
(
a
i

)
6≡ 0 mod p. By Lucas’ theorem [1], it suffices to show that each digit in the

base-p expansion of a is greater than or equal to the corresponding digit in the base-p expansion of i. But
each digit in the base-p expansion of a is 5

6 (p−1), whereas each digit of the base-p expansion of i is 1
2 (p−1).

This shows that fpt(x2 − y3) ≥ a
pe = 5

6 −
5

6pe for all e, which finishes the proof.
The calculation for the case p ≡ 5 mod 6 is more involved, so I’ll defer to Daniel Hernandez’s thesis for

that calculation [3]. More generally, Daniel’s thesis is the best reference I know for learning more about the
F -pure threshold.
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3 Singularities intrinsically

Previously we considered the singularities of hypersurfaces in Fp[x1, · · · , xn]. Now we ask: how do we measure
the singularities of an affine variety in an intrinsic way? The first step in this direction was established by
Kunz in the ‘60s:

Theorem 3.1. Let R be a local ring of characteristic p > 0. Then R is regular if and only if R1/pe is free
as an R-module.

This suggests that we can measure how singular a ring is by measuring how far R1/pe is from being a
free R-module. One way of doing this is by counting the number of direct summands of R in R1/pe . Note
that if R is regular, then the Cohen structure theorem, along with the same argument as in equation (1),

gives us that R1/pe ∼= Rp
ed

, where d = dimR. This gives us an upper bound: the number of summands of
R in R1/pe is bounded above by ped. Thus, a ring R is closer to being regular if this number is close to ped.
We’ll denote the number of summands of R in R1/pe by ae.

The least we can ask for is to have ae ≥ 1:

Definition 3.2. R is called F -split if there exists some e such that R is a direct summand of R1/pe . In
other words, the inclusion R ↪→ R1/pe splits.

Exercise: If R is F -split, then the inclusion R ↪→ R1/pe splits for all e.
We can also study the asymptotic nature of ae as e goes to infinity. This leads to another invariant called

the F -signature of R:

s(R) = lim
e→∞

ae
ped

.

Of course, we must first ask whether this limit exists; this was proven by Kevin Tucker [7]. Given that, it’s
clear that s(R) ≥ 0, and our work above shows that s(R) ≤ 1. We also know that the F -signature of regular
rings is 1. It turns out that the converse is true as well [4].

If the numbers ae grow quickly enough, we call the ring R strongly F -regular

Definition 3.3. R is called strongly F -regular if s(R) > 0.

It should be noted that this definition of strong F -regularity is ahistorical: the notion of strong F -
regularity first arose in the work of Hochster and Huneke on tight closure, long before the idea of F -signature
was introduced.

The idea of F -signature is that Since strongly F -regular rings are supposed to be quite close to regular
rings, we expect them to have some nice properties. Indeed, we have the following theorem:

Theorem 3.4 ([6], Theorem 1.18). Strongly F -regular rings are Cohen-Macaulay and normal.

4 Relationship with characteristic 0

Let f = x2 − y3 ∈ C[x, y] and let fp = x2 − y3 ∈ Fp[x, y] be the “mod p reduction” of f . We’ve already seen
that lct(f) = 5/6 and fpt(fp) is given by:

fpt(f) =


1
2 , p = 2
2
3 , p = 3
5
6 , p ≡ 1 mod 6
5
6 −

1
6p , p ≡ 5 mod 6

Notice that we have the following relationship in this special case:

lim
p→∞

fpt(f) = lct(f)

This is not an accident. In general, we have a theorem saying the same thing happens for all f , suggesting
our definition of the F -pure threshold is the correct one:
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Theorem 4.1 ([2], Theorem 3.18). Fix f ∈ Z[x1, · · · , xn]. Then

• fpt(fp) ≤ lct(f) for all p� 0 prime, and

• limp→∞ fpt(fp) = lct(f)

So we see that one can compute the lct of a polynomial by reducing mod p and computing the F -pure
threshold. This is especially surprising if you consider that the lct has something to do with the integrability
of f at the origin. As surprising as this is, it reflects a general theme in the theory of singularities in
characteristic p, or F -singularities. For instance, we have a similar theorem relating strongly F -regular
singularities to klt singularities, which are important to birational geometers:

Theorem 4.2. Let R be a Gorenstein domain finitely generated over a field of characteristic 0. Then R has
F -regular type if and only if R has klt singularities

Here, “F -regular type” means, roughly, that there’s a dense set of primes, modulo which you get a
strongly F -regular ring. More precisely, for any finitely generated C-alegbra R, given by

R ∼= C[x1, · · · , xn]/(f1, · · · , fm)

we let A be the Z-algebra generated by all the coefficients of all the polynomials fi. Then we can construct
the A-algebra corresponding to R,

RA := A[x1, · · · , xn]/(f1, · · · , fm).

Then R is said to have F -XXX type, where “XXX” is your favorite adjective, if there’s a dense set of maximal
ideals µ ∈ SpecA such that the fiber of RA over µ is F -XXX (note that these fibers are always rings of
positive characteristic).

Similarly, we have

Theorem 4.3. Let R be a Gorenstein domain finitely generated over a field of characteristic 0. If R has F -
split type, then R has log canonical singularities. If R has F -injective type, then R has Du Bois singularities.

The converses to the above statements are conjectured. See section 1.5 of [6] for details.

References

[1] Lucas’s theorem. https://en.wikipedia.org/wiki/Lucas%27s_theorem. Accessed: 2016-12-08.
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